Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq12i | GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.) |
Ref | Expression |
---|---|
ifbieq12i.1 | ⊢ (𝜑 ↔ 𝜓) |
ifbieq12i.2 | ⊢ 𝐴 = 𝐶 |
ifbieq12i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
ifbieq12i | ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq12i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | ifeq1 3529 | . . 3 ⊢ (𝐴 = 𝐶 → if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵) |
4 | ifbieq12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
5 | ifbieq12i.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
6 | 4, 5 | ifbieq2i 3549 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷) |
7 | 3, 6 | eqtri 2191 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ifcif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-if 3527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |