| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12i | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.) |
| Ref | Expression |
|---|---|
| ifbieq12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| ifbieq12i.2 | ⊢ 𝐴 = 𝐶 |
| ifbieq12i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| ifbieq12i | ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | ifeq1 3578 | . . 3 ⊢ (𝐴 = 𝐶 → if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵) |
| 4 | ifbieq12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | ifbieq12i.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 6 | 4, 5 | ifbieq2i 3599 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷) |
| 7 | 3, 6 | eqtri 2227 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ifcif 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3174 df-if 3576 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |