| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| Ref | Expression | 
|---|---|
| ifbieq12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| ifbieq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) | 
| ifbieq12d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) | 
| Ref | Expression | 
|---|---|
| ifbieq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifbieq12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3582 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | 
| 3 | ifbieq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | ifbieq12d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | ifeq12d 3580 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) | 
| 6 | 2, 5 | eqtrd 2229 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 | 
| This theorem is referenced by: updjudhcoinlf 7146 updjudhcoinrg 7147 omp1eom 7161 xaddval 9920 iseqf1olemqval 10592 iseqf1olemqk 10599 seq3f1olemqsum 10605 seqf1oglem2 10612 exp3val 10633 cvgratz 11697 eucalgval2 12221 ennnfonelemg 12620 ennnfonelem1 12624 mulgval 13252 lgsval 15245 gausslemma2dlem1a 15299 gausslemma2dlem1f1o 15301 gausslemma2dlem2 15303 gausslemma2dlem3 15304 gausslemma2dlem4 15305 | 
| Copyright terms: Public domain | W3C validator |