| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| ifbieq12d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ifbieq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3624 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| 3 | ifbieq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | ifbieq12d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | ifeq12d 3622 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| 6 | 2, 5 | eqtrd 2262 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: updjudhcoinlf 7255 updjudhcoinrg 7256 omp1eom 7270 xaddval 10049 iseqf1olemqval 10730 iseqf1olemqk 10737 seq3f1olemqsum 10743 seqf1oglem2 10750 exp3val 10771 ccatfvalfi 11135 ccatval1 11140 ccatval2 11141 cvgratz 12051 eucalgval2 12583 ennnfonelemg 12982 ennnfonelem1 12986 mulgval 13667 lgsval 15691 gausslemma2dlem1a 15745 gausslemma2dlem1f1o 15747 gausslemma2dlem2 15749 gausslemma2dlem3 15750 gausslemma2dlem4 15751 vtxvalg 15825 iedgvalg 15826 |
| Copyright terms: Public domain | W3C validator |