| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| ifbieq12d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ifbieq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3593 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| 3 | ifbieq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | ifbieq12d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | ifeq12d 3591 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| 6 | 2, 5 | eqtrd 2239 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ifcif 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3171 df-if 3573 |
| This theorem is referenced by: updjudhcoinlf 7189 updjudhcoinrg 7190 omp1eom 7204 xaddval 9974 iseqf1olemqval 10652 iseqf1olemqk 10659 seq3f1olemqsum 10665 seqf1oglem2 10672 exp3val 10693 ccatfvalfi 11056 ccatval1 11061 ccatval2 11062 cvgratz 11887 eucalgval2 12419 ennnfonelemg 12818 ennnfonelem1 12822 mulgval 13502 lgsval 15525 gausslemma2dlem1a 15579 gausslemma2dlem1f1o 15581 gausslemma2dlem2 15583 gausslemma2dlem3 15584 gausslemma2dlem4 15585 vtxvalg 15659 iedgvalg 15660 |
| Copyright terms: Public domain | W3C validator |