| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq12d | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifbieq12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| ifbieq12d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ifbieq12d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3604 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| 3 | ifbieq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 4 | ifbieq12d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | ifeq12d 3602 | . 2 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| 6 | 2, 5 | eqtrd 2242 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ifcif 3582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-un 3181 df-if 3583 |
| This theorem is referenced by: updjudhcoinlf 7215 updjudhcoinrg 7216 omp1eom 7230 xaddval 10009 iseqf1olemqval 10689 iseqf1olemqk 10696 seq3f1olemqsum 10702 seqf1oglem2 10709 exp3val 10730 ccatfvalfi 11093 ccatval1 11098 ccatval2 11099 cvgratz 12009 eucalgval2 12541 ennnfonelemg 12940 ennnfonelem1 12944 mulgval 13625 lgsval 15648 gausslemma2dlem1a 15702 gausslemma2dlem1f1o 15704 gausslemma2dlem2 15706 gausslemma2dlem3 15707 gausslemma2dlem4 15708 vtxvalg 15782 iedgvalg 15783 |
| Copyright terms: Public domain | W3C validator |