| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq2d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3624 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴)) |
| 3 | ifbieq2d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq2d 3621 | . 2 ⊢ (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: difinfsnlem 7254 ctmlemr 7263 xnegeq 10011 xaddval 10029 iseqf1olemqval 10709 iseqf1olemqk 10716 seq3f1olemqsum 10722 exp3val 10750 gcdval 12466 gcdass 12522 lcmval 12571 lcmass 12593 pcval 12805 ennnfonelemj0 12958 ennnfonelemjn 12959 ennnfonelem0 12962 ennnfonelemp1 12963 ennnfonelemnn0 12979 mulgval 13645 znval 14585 lgsval 15668 lgsfvalg 15669 lgsval2lem 15674 nnsf 16302 peano4nninf 16303 peano3nninf 16304 exmidsbthr 16322 |
| Copyright terms: Public domain | W3C validator |