Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq2d | GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq2d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 3540 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴)) |
3 | ifbieq2d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq2d 3537 | . 2 ⊢ (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
5 | 2, 4 | eqtrd 2198 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ifcif 3519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-v 2727 df-un 3119 df-if 3520 |
This theorem is referenced by: difinfsnlem 7060 ctmlemr 7069 xnegeq 9759 xaddval 9777 iseqf1olemqval 10418 iseqf1olemqk 10425 seq3f1olemqsum 10431 exp3val 10453 gcdval 11888 gcdass 11944 lcmval 11991 lcmass 12013 pcval 12224 ennnfonelemj0 12330 ennnfonelemjn 12331 ennnfonelem0 12334 ennnfonelemp1 12335 ennnfonelemnn0 12351 lgsval 13505 lgsfvalg 13506 lgsval2lem 13511 nnsf 13845 peano4nninf 13846 peano3nninf 13847 exmidsbthr 13862 |
Copyright terms: Public domain | W3C validator |