ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2d GIF version

Theorem ifbieq2d 3582
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2d.1 (𝜑 → (𝜓𝜒))
ifbieq2d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ifbieq2d (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))

Proof of Theorem ifbieq2d
StepHypRef Expression
1 ifbieq2d.1 . . 3 (𝜑 → (𝜓𝜒))
21ifbid 3579 . 2 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴))
3 ifbieq2d.2 . . 3 (𝜑𝐴 = 𝐵)
43ifeq2d 3576 . 2 (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
52, 4eqtrd 2226 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  ifcif 3558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-un 3158  df-if 3559
This theorem is referenced by:  difinfsnlem  7160  ctmlemr  7169  xnegeq  9896  xaddval  9914  iseqf1olemqval  10574  iseqf1olemqk  10581  seq3f1olemqsum  10587  exp3val  10615  gcdval  12099  gcdass  12155  lcmval  12204  lcmass  12226  pcval  12437  ennnfonelemj0  12561  ennnfonelemjn  12562  ennnfonelem0  12565  ennnfonelemp1  12566  ennnfonelemnn0  12582  mulgval  13195  znval  14135  lgsval  15161  lgsfvalg  15162  lgsval2lem  15167  nnsf  15565  peano4nninf  15566  peano3nninf  15567  exmidsbthr  15583
  Copyright terms: Public domain W3C validator