| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq2d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3624 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴)) |
| 3 | ifbieq2d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq2d 3621 | . 2 ⊢ (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: difinfsnlem 7274 ctmlemr 7283 xnegeq 10031 xaddval 10049 iseqf1olemqval 10730 iseqf1olemqk 10737 seq3f1olemqsum 10743 exp3val 10771 gcdval 12488 gcdass 12544 lcmval 12593 lcmass 12615 pcval 12827 ennnfonelemj0 12980 ennnfonelemjn 12981 ennnfonelem0 12984 ennnfonelemp1 12985 ennnfonelemnn0 13001 mulgval 13667 znval 14608 lgsval 15691 lgsfvalg 15692 lgsval2lem 15697 nnsf 16401 peano4nninf 16402 peano3nninf 16403 exmidsbthr 16421 |
| Copyright terms: Public domain | W3C validator |