ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2d GIF version

Theorem ifbieq2d 3586
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2d.1 (𝜑 → (𝜓𝜒))
ifbieq2d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ifbieq2d (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))

Proof of Theorem ifbieq2d
StepHypRef Expression
1 ifbieq2d.1 . . 3 (𝜑 → (𝜓𝜒))
21ifbid 3583 . 2 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴))
3 ifbieq2d.2 . . 3 (𝜑𝐴 = 𝐵)
43ifeq2d 3580 . 2 (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
52, 4eqtrd 2229 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-if 3563
This theorem is referenced by:  difinfsnlem  7174  ctmlemr  7183  xnegeq  9921  xaddval  9939  iseqf1olemqval  10611  iseqf1olemqk  10618  seq3f1olemqsum  10624  exp3val  10652  gcdval  12153  gcdass  12209  lcmval  12258  lcmass  12280  pcval  12492  ennnfonelemj0  12645  ennnfonelemjn  12646  ennnfonelem0  12649  ennnfonelemp1  12650  ennnfonelemnn0  12666  mulgval  13330  znval  14270  lgsval  15353  lgsfvalg  15354  lgsval2lem  15359  nnsf  15760  peano4nninf  15761  peano3nninf  15762  exmidsbthr  15780
  Copyright terms: Public domain W3C validator