ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2d GIF version

Theorem ifbieq2d 3597
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2d.1 (𝜑 → (𝜓𝜒))
ifbieq2d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ifbieq2d (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))

Proof of Theorem ifbieq2d
StepHypRef Expression
1 ifbieq2d.1 . . 3 (𝜑 → (𝜓𝜒))
21ifbid 3594 . 2 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴))
3 ifbieq2d.2 . . 3 (𝜑𝐴 = 𝐵)
43ifeq2d 3591 . 2 (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
52, 4eqtrd 2239 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  ifcif 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3172  df-if 3574
This theorem is referenced by:  difinfsnlem  7213  ctmlemr  7222  xnegeq  9962  xaddval  9980  iseqf1olemqval  10658  iseqf1olemqk  10665  seq3f1olemqsum  10671  exp3val  10699  gcdval  12330  gcdass  12386  lcmval  12435  lcmass  12457  pcval  12669  ennnfonelemj0  12822  ennnfonelemjn  12823  ennnfonelem0  12826  ennnfonelemp1  12827  ennnfonelemnn0  12843  mulgval  13508  znval  14448  lgsval  15531  lgsfvalg  15532  lgsval2lem  15537  nnsf  16057  peano4nninf  16058  peano3nninf  16059  exmidsbthr  16077
  Copyright terms: Public domain W3C validator