| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | GIF version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq2d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifbieq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ifbid 3594 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴)) |
| 3 | ifbieq2d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | ifeq2d 3591 | . 2 ⊢ (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| 5 | 2, 4 | eqtrd 2239 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ifcif 3573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3172 df-if 3574 |
| This theorem is referenced by: difinfsnlem 7213 ctmlemr 7222 xnegeq 9962 xaddval 9980 iseqf1olemqval 10658 iseqf1olemqk 10665 seq3f1olemqsum 10671 exp3val 10699 gcdval 12330 gcdass 12386 lcmval 12435 lcmass 12457 pcval 12669 ennnfonelemj0 12822 ennnfonelemjn 12823 ennnfonelem0 12826 ennnfonelemp1 12827 ennnfonelemnn0 12843 mulgval 13508 znval 14448 lgsval 15531 lgsfvalg 15532 lgsval2lem 15537 nnsf 16057 peano4nninf 16058 peano3nninf 16059 exmidsbthr 16077 |
| Copyright terms: Public domain | W3C validator |