ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2d GIF version

Theorem ifbieq2d 3627
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2d.1 (𝜑 → (𝜓𝜒))
ifbieq2d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ifbieq2d (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))

Proof of Theorem ifbieq2d
StepHypRef Expression
1 ifbieq2d.1 . . 3 (𝜑 → (𝜓𝜒))
21ifbid 3624 . 2 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴))
3 ifbieq2d.2 . . 3 (𝜑𝐴 = 𝐵)
43ifeq2d 3621 . 2 (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
52, 4eqtrd 2262 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-if 3603
This theorem is referenced by:  difinfsnlem  7274  ctmlemr  7283  xnegeq  10031  xaddval  10049  iseqf1olemqval  10730  iseqf1olemqk  10737  seq3f1olemqsum  10743  exp3val  10771  gcdval  12488  gcdass  12544  lcmval  12593  lcmass  12615  pcval  12827  ennnfonelemj0  12980  ennnfonelemjn  12981  ennnfonelem0  12984  ennnfonelemp1  12985  ennnfonelemnn0  13001  mulgval  13667  znval  14608  lgsval  15691  lgsfvalg  15692  lgsval2lem  15697  nnsf  16401  peano4nninf  16402  peano3nninf  16403  exmidsbthr  16421
  Copyright terms: Public domain W3C validator