ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0tonninf GIF version

Theorem 0tonninf 10409
Description: The mapping of zero into is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
0tonninf (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 0tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5508 . . . 4 (𝐼‘0) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0)
3 0xnn0 9218 . . . . 5 0 ∈ ℕ0*
4 0nn0 9164 . . . . . . 7 0 ∈ ℕ0
5 nn0nepnf 9220 . . . . . . 7 (0 ∈ ℕ0 → 0 ≠ +∞)
64, 5ax-mp 5 . . . . . 6 0 ≠ +∞
76necomi 2430 . . . . 5 +∞ ≠ 0
8 fvunsng 5702 . . . . 5 ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0))
93, 7, 8mp2an 426 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0)
10 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110frechashgf1o 10398 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
12 f1ocnv 5466 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1311, 12ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
14 f1of 5453 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1513, 14ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
16 fvco3 5579 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
1715, 4, 16mp2an 426 . . . 4 ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0))
182, 9, 173eqtri 2200 . . 3 (𝐼‘0) = (𝐹‘(𝐺‘0))
19 0zd 9238 . . . . . . 7 (⊤ → 0 ∈ ℤ)
2019, 10frec2uz0d 10369 . . . . . 6 (⊤ → (𝐺‘∅) = 0)
2120mptru 1362 . . . . 5 (𝐺‘∅) = 0
22 peano1 4587 . . . . . 6 ∅ ∈ ω
23 f1ocnvfv 5770 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2411, 22, 23mp2an 426 . . . . 5 ((𝐺‘∅) = 0 → (𝐺‘0) = ∅)
2521, 24ax-mp 5 . . . 4 (𝐺‘0) = ∅
2625fveq2i 5510 . . 3 (𝐹‘(𝐺‘0)) = (𝐹‘∅)
27 eleq2 2239 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
2827ifbid 3553 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
2928mpteq2dv 4089 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
30 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31 omex 4586 . . . . . 6 ω ∈ V
3231mptex 5734 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
3329, 30, 32fvmpt3i 5588 . . . 4 (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3422, 33ax-mp 5 . . 3 (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3518, 26, 343eqtri 2200 . 2 (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
36 noel 3424 . . . 4 ¬ 𝑖 ∈ ∅
3736iffalsei 3541 . . 3 if(𝑖 ∈ ∅, 1o, ∅) = ∅
3837mpteq2i 4085 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
39 eqidd 2176 . . 3 (𝑖 = 𝑥 → ∅ = ∅)
4039cbvmptv 4094 . 2 (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅)
4135, 38, 403eqtri 2200 1 (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wtru 1354  wcel 2146  wne 2345  cun 3125  c0 3420  ifcif 3532  {csn 3589  cop 3592  cmpt 4059  ωcom 4583   × cxp 4618  ccnv 4619  ccom 4624  wf 5204  1-1-ontowf1o 5207  cfv 5208  (class class class)co 5865  freccfrec 6381  1oc1o 6400  0cc0 7786  1c1 7787   + caddc 7789  +∞cpnf 7963  0cn0 9149  0*cxnn0 9212  cz 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-xnn0 9213  df-z 9227  df-uz 9502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator