| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0tonninf | GIF version | ||
| Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| 0tonninf | ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i | . . . . 5 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 2 | 1 | fveq1i 5559 | . . . 4 ⊢ (𝐼‘0) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) |
| 3 | 0xnn0 9318 | . . . . 5 ⊢ 0 ∈ ℕ0* | |
| 4 | 0nn0 9264 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 5 | nn0nepnf 9320 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 0 ≠ +∞ |
| 7 | 6 | necomi 2452 | . . . . 5 ⊢ +∞ ≠ 0 |
| 8 | fvunsng 5756 | . . . . 5 ⊢ ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0)) | |
| 9 | 3, 7, 8 | mp2an 426 | . . . 4 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0) |
| 10 | fxnn0nninf.g | . . . . . . . 8 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 11 | 10 | frechashgf1o 10520 | . . . . . . 7 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 12 | f1ocnv 5517 | . . . . . . 7 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ◡𝐺:ℕ0–1-1-onto→ω |
| 14 | f1of 5504 | . . . . . 6 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ◡𝐺:ℕ0⟶ω |
| 16 | fvco3 5632 | . . . . 5 ⊢ ((◡𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0))) | |
| 17 | 15, 4, 16 | mp2an 426 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0)) |
| 18 | 2, 9, 17 | 3eqtri 2221 | . . 3 ⊢ (𝐼‘0) = (𝐹‘(◡𝐺‘0)) |
| 19 | 0zd 9338 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℤ) | |
| 20 | 19, 10 | frec2uz0d 10491 | . . . . . 6 ⊢ (⊤ → (𝐺‘∅) = 0) |
| 21 | 20 | mptru 1373 | . . . . 5 ⊢ (𝐺‘∅) = 0 |
| 22 | peano1 4630 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 23 | f1ocnvfv 5826 | . . . . . 6 ⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) | |
| 24 | 11, 22, 23 | mp2an 426 | . . . . 5 ⊢ ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅) |
| 25 | 21, 24 | ax-mp 5 | . . . 4 ⊢ (◡𝐺‘0) = ∅ |
| 26 | 25 | fveq2i 5561 | . . 3 ⊢ (𝐹‘(◡𝐺‘0)) = (𝐹‘∅) |
| 27 | eleq2 2260 | . . . . . . 7 ⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) | |
| 28 | 27 | ifbid 3582 | . . . . . 6 ⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅)) |
| 29 | 28 | mpteq2dv 4124 | . . . . 5 ⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
| 30 | fxnn0nninf.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 31 | omex 4629 | . . . . . 6 ⊢ ω ∈ V | |
| 32 | 31 | mptex 5788 | . . . . 5 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ V |
| 33 | 29, 30, 32 | fvmpt3i 5641 | . . . 4 ⊢ (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
| 34 | 22, 33 | ax-mp 5 | . . 3 ⊢ (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
| 35 | 18, 26, 34 | 3eqtri 2221 | . 2 ⊢ (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
| 36 | noel 3454 | . . . 4 ⊢ ¬ 𝑖 ∈ ∅ | |
| 37 | 36 | iffalsei 3570 | . . 3 ⊢ if(𝑖 ∈ ∅, 1o, ∅) = ∅ |
| 38 | 37 | mpteq2i 4120 | . 2 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅) |
| 39 | eqidd 2197 | . . 3 ⊢ (𝑖 = 𝑥 → ∅ = ∅) | |
| 40 | 39 | cbvmptv 4129 | . 2 ⊢ (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅) |
| 41 | 35, 38, 40 | 3eqtri 2221 | 1 ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ≠ wne 2367 ∪ cun 3155 ∅c0 3450 ifcif 3561 {csn 3622 〈cop 3625 ↦ cmpt 4094 ωcom 4626 × cxp 4661 ◡ccnv 4662 ∘ ccom 4667 ⟶wf 5254 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 freccfrec 6448 1oc1o 6467 0cc0 7879 1c1 7880 + caddc 7882 +∞cpnf 8058 ℕ0cn0 9249 ℕ0*cxnn0 9312 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-xnn0 9313 df-z 9327 df-uz 9602 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |