ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0tonninf GIF version

Theorem 0tonninf 10511
Description: The mapping of zero into is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
0tonninf (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 0tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5555 . . . 4 (𝐼‘0) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0)
3 0xnn0 9309 . . . . 5 0 ∈ ℕ0*
4 0nn0 9255 . . . . . . 7 0 ∈ ℕ0
5 nn0nepnf 9311 . . . . . . 7 (0 ∈ ℕ0 → 0 ≠ +∞)
64, 5ax-mp 5 . . . . . 6 0 ≠ +∞
76necomi 2449 . . . . 5 +∞ ≠ 0
8 fvunsng 5752 . . . . 5 ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0))
93, 7, 8mp2an 426 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0)
10 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110frechashgf1o 10499 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
12 f1ocnv 5513 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1311, 12ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
14 f1of 5500 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1513, 14ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
16 fvco3 5628 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
1715, 4, 16mp2an 426 . . . 4 ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0))
182, 9, 173eqtri 2218 . . 3 (𝐼‘0) = (𝐹‘(𝐺‘0))
19 0zd 9329 . . . . . . 7 (⊤ → 0 ∈ ℤ)
2019, 10frec2uz0d 10470 . . . . . 6 (⊤ → (𝐺‘∅) = 0)
2120mptru 1373 . . . . 5 (𝐺‘∅) = 0
22 peano1 4626 . . . . . 6 ∅ ∈ ω
23 f1ocnvfv 5822 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2411, 22, 23mp2an 426 . . . . 5 ((𝐺‘∅) = 0 → (𝐺‘0) = ∅)
2521, 24ax-mp 5 . . . 4 (𝐺‘0) = ∅
2625fveq2i 5557 . . 3 (𝐹‘(𝐺‘0)) = (𝐹‘∅)
27 eleq2 2257 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
2827ifbid 3578 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
2928mpteq2dv 4120 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
30 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31 omex 4625 . . . . . 6 ω ∈ V
3231mptex 5784 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
3329, 30, 32fvmpt3i 5637 . . . 4 (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3422, 33ax-mp 5 . . 3 (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3518, 26, 343eqtri 2218 . 2 (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
36 noel 3450 . . . 4 ¬ 𝑖 ∈ ∅
3736iffalsei 3566 . . 3 if(𝑖 ∈ ∅, 1o, ∅) = ∅
3837mpteq2i 4116 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
39 eqidd 2194 . . 3 (𝑖 = 𝑥 → ∅ = ∅)
4039cbvmptv 4125 . 2 (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅)
4135, 38, 403eqtri 2218 1 (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wtru 1365  wcel 2164  wne 2364  cun 3151  c0 3446  ifcif 3557  {csn 3618  cop 3621  cmpt 4090  ωcom 4622   × cxp 4657  ccnv 4658  ccom 4663  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  freccfrec 6443  1oc1o 6462  0cc0 7872  1c1 7873   + caddc 7875  +∞cpnf 8051  0cn0 9240  0*cxnn0 9303  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator