ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0tonninf GIF version

Theorem 0tonninf 10470
Description: The mapping of zero into is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
0tonninf (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 0tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5535 . . . 4 (𝐼‘0) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0)
3 0xnn0 9275 . . . . 5 0 ∈ ℕ0*
4 0nn0 9221 . . . . . . 7 0 ∈ ℕ0
5 nn0nepnf 9277 . . . . . . 7 (0 ∈ ℕ0 → 0 ≠ +∞)
64, 5ax-mp 5 . . . . . 6 0 ≠ +∞
76necomi 2445 . . . . 5 +∞ ≠ 0
8 fvunsng 5731 . . . . 5 ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0))
93, 7, 8mp2an 426 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0)
10 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110frechashgf1o 10459 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
12 f1ocnv 5493 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1311, 12ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
14 f1of 5480 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1513, 14ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
16 fvco3 5608 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
1715, 4, 16mp2an 426 . . . 4 ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0))
182, 9, 173eqtri 2214 . . 3 (𝐼‘0) = (𝐹‘(𝐺‘0))
19 0zd 9295 . . . . . . 7 (⊤ → 0 ∈ ℤ)
2019, 10frec2uz0d 10430 . . . . . 6 (⊤ → (𝐺‘∅) = 0)
2120mptru 1373 . . . . 5 (𝐺‘∅) = 0
22 peano1 4611 . . . . . 6 ∅ ∈ ω
23 f1ocnvfv 5801 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2411, 22, 23mp2an 426 . . . . 5 ((𝐺‘∅) = 0 → (𝐺‘0) = ∅)
2521, 24ax-mp 5 . . . 4 (𝐺‘0) = ∅
2625fveq2i 5537 . . 3 (𝐹‘(𝐺‘0)) = (𝐹‘∅)
27 eleq2 2253 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
2827ifbid 3570 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
2928mpteq2dv 4109 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
30 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31 omex 4610 . . . . . 6 ω ∈ V
3231mptex 5763 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
3329, 30, 32fvmpt3i 5617 . . . 4 (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3422, 33ax-mp 5 . . 3 (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3518, 26, 343eqtri 2214 . 2 (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
36 noel 3441 . . . 4 ¬ 𝑖 ∈ ∅
3736iffalsei 3558 . . 3 if(𝑖 ∈ ∅, 1o, ∅) = ∅
3837mpteq2i 4105 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
39 eqidd 2190 . . 3 (𝑖 = 𝑥 → ∅ = ∅)
4039cbvmptv 4114 . 2 (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅)
4135, 38, 403eqtri 2214 1 (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wtru 1365  wcel 2160  wne 2360  cun 3142  c0 3437  ifcif 3549  {csn 3607  cop 3610  cmpt 4079  ωcom 4607   × cxp 4642  ccnv 4643  ccom 4648  wf 5231  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5896  freccfrec 6415  1oc1o 6434  0cc0 7841  1c1 7842   + caddc 7844  +∞cpnf 8019  0cn0 9206  0*cxnn0 9269  cz 9283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-xnn0 9270  df-z 9284  df-uz 9559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator