| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0tonninf | GIF version | ||
| Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| 0tonninf | ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i | . . . . 5 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 2 | 1 | fveq1i 5624 | . . . 4 ⊢ (𝐼‘0) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) |
| 3 | 0xnn0 9426 | . . . . 5 ⊢ 0 ∈ ℕ0* | |
| 4 | 0nn0 9372 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 5 | nn0nepnf 9428 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 0 ≠ +∞ |
| 7 | 6 | necomi 2485 | . . . . 5 ⊢ +∞ ≠ 0 |
| 8 | fvunsng 5826 | . . . . 5 ⊢ ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0)) | |
| 9 | 3, 7, 8 | mp2an 426 | . . . 4 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0) |
| 10 | fxnn0nninf.g | . . . . . . . 8 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 11 | 10 | frechashgf1o 10637 | . . . . . . 7 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 12 | f1ocnv 5581 | . . . . . . 7 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ◡𝐺:ℕ0–1-1-onto→ω |
| 14 | f1of 5568 | . . . . . 6 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ◡𝐺:ℕ0⟶ω |
| 16 | fvco3 5698 | . . . . 5 ⊢ ((◡𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0))) | |
| 17 | 15, 4, 16 | mp2an 426 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0)) |
| 18 | 2, 9, 17 | 3eqtri 2254 | . . 3 ⊢ (𝐼‘0) = (𝐹‘(◡𝐺‘0)) |
| 19 | 0zd 9446 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℤ) | |
| 20 | 19, 10 | frec2uz0d 10608 | . . . . . 6 ⊢ (⊤ → (𝐺‘∅) = 0) |
| 21 | 20 | mptru 1404 | . . . . 5 ⊢ (𝐺‘∅) = 0 |
| 22 | peano1 4683 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 23 | f1ocnvfv 5896 | . . . . . 6 ⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) | |
| 24 | 11, 22, 23 | mp2an 426 | . . . . 5 ⊢ ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅) |
| 25 | 21, 24 | ax-mp 5 | . . . 4 ⊢ (◡𝐺‘0) = ∅ |
| 26 | 25 | fveq2i 5626 | . . 3 ⊢ (𝐹‘(◡𝐺‘0)) = (𝐹‘∅) |
| 27 | eleq2 2293 | . . . . . . 7 ⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) | |
| 28 | 27 | ifbid 3624 | . . . . . 6 ⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅)) |
| 29 | 28 | mpteq2dv 4174 | . . . . 5 ⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
| 30 | fxnn0nninf.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 31 | omex 4682 | . . . . . 6 ⊢ ω ∈ V | |
| 32 | 31 | mptex 5858 | . . . . 5 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ V |
| 33 | 29, 30, 32 | fvmpt3i 5707 | . . . 4 ⊢ (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
| 34 | 22, 33 | ax-mp 5 | . . 3 ⊢ (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
| 35 | 18, 26, 34 | 3eqtri 2254 | . 2 ⊢ (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
| 36 | noel 3495 | . . . 4 ⊢ ¬ 𝑖 ∈ ∅ | |
| 37 | 36 | iffalsei 3611 | . . 3 ⊢ if(𝑖 ∈ ∅, 1o, ∅) = ∅ |
| 38 | 37 | mpteq2i 4170 | . 2 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅) |
| 39 | eqidd 2230 | . . 3 ⊢ (𝑖 = 𝑥 → ∅ = ∅) | |
| 40 | 39 | cbvmptv 4179 | . 2 ⊢ (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅) |
| 41 | 35, 38, 40 | 3eqtri 2254 | 1 ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ≠ wne 2400 ∪ cun 3195 ∅c0 3491 ifcif 3602 {csn 3666 〈cop 3669 ↦ cmpt 4144 ωcom 4679 × cxp 4714 ◡ccnv 4715 ∘ ccom 4720 ⟶wf 5310 –1-1-onto→wf1o 5313 ‘cfv 5314 (class class class)co 5994 freccfrec 6526 1oc1o 6545 0cc0 7987 1c1 7988 + caddc 7990 +∞cpnf 8166 ℕ0cn0 9357 ℕ0*cxnn0 9420 ℤcz 9434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-xnn0 9421 df-z 9435 df-uz 9711 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |