Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  0tonninf GIF version

Theorem 0tonninf 10263
 Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
0tonninf (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 0tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5431 . . . 4 (𝐼‘0) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0)
3 0xnn0 9090 . . . . 5 0 ∈ ℕ0*
4 0nn0 9036 . . . . . . 7 0 ∈ ℕ0
5 nn0nepnf 9092 . . . . . . 7 (0 ∈ ℕ0 → 0 ≠ +∞)
64, 5ax-mp 5 . . . . . 6 0 ≠ +∞
76necomi 2394 . . . . 5 +∞ ≠ 0
8 fvunsng 5623 . . . . 5 ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0))
93, 7, 8mp2an 423 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹𝐺)‘0)
10 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1110frechashgf1o 10252 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
12 f1ocnv 5389 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1311, 12ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
14 f1of 5376 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1513, 14ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
16 fvco3 5501 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0)))
1715, 4, 16mp2an 423 . . . 4 ((𝐹𝐺)‘0) = (𝐹‘(𝐺‘0))
182, 9, 173eqtri 2165 . . 3 (𝐼‘0) = (𝐹‘(𝐺‘0))
19 0zd 9110 . . . . . . 7 (⊤ → 0 ∈ ℤ)
2019, 10frec2uz0d 10223 . . . . . 6 (⊤ → (𝐺‘∅) = 0)
2120mptru 1341 . . . . 5 (𝐺‘∅) = 0
22 peano1 4517 . . . . . 6 ∅ ∈ ω
23 f1ocnvfv 5689 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2411, 22, 23mp2an 423 . . . . 5 ((𝐺‘∅) = 0 → (𝐺‘0) = ∅)
2521, 24ax-mp 5 . . . 4 (𝐺‘0) = ∅
2625fveq2i 5433 . . 3 (𝐹‘(𝐺‘0)) = (𝐹‘∅)
27 eleq2 2204 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
2827ifbid 3499 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
2928mpteq2dv 4028 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
30 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31 omex 4516 . . . . . 6 ω ∈ V
3231mptex 5655 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
3329, 30, 32fvmpt3i 5510 . . . 4 (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
3422, 33ax-mp 5 . . 3 (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3518, 26, 343eqtri 2165 . 2 (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
36 noel 3373 . . . 4 ¬ 𝑖 ∈ ∅
3736iffalsei 3489 . . 3 if(𝑖 ∈ ∅, 1o, ∅) = ∅
3837mpteq2i 4024 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
39 eqidd 2141 . . 3 (𝑖 = 𝑥 → ∅ = ∅)
4039cbvmptv 4033 . 2 (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅)
4135, 38, 403eqtri 2165 1 (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332  ⊤wtru 1333   ∈ wcel 1481   ≠ wne 2309   ∪ cun 3075  ∅c0 3369  ifcif 3480  {csn 3533  ⟨cop 3536   ↦ cmpt 3998  ωcom 4513   × cxp 4546  ◡ccnv 4547   ∘ ccom 4552  ⟶wf 5128  –1-1-onto→wf1o 5131  ‘cfv 5132  (class class class)co 5783  freccfrec 6296  1oc1o 6315  0cc0 7664  1c1 7665   + caddc 7667  +∞cpnf 7841  ℕ0cn0 9021  ℕ0*cxnn0 9084  ℤcz 9098 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-recs 6211  df-frec 6297  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-n0 9022  df-xnn0 9085  df-z 9099  df-uz 9371 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator