| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0tonninf | GIF version | ||
| Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| 0tonninf | ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.i | . . . . 5 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 2 | 1 | fveq1i 5589 | . . . 4 ⊢ (𝐼‘0) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) |
| 3 | 0xnn0 9379 | . . . . 5 ⊢ 0 ∈ ℕ0* | |
| 4 | 0nn0 9325 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 5 | nn0nepnf 9381 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 0 ≠ +∞ |
| 7 | 6 | necomi 2462 | . . . . 5 ⊢ +∞ ≠ 0 |
| 8 | fvunsng 5790 | . . . . 5 ⊢ ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0)) | |
| 9 | 3, 7, 8 | mp2an 426 | . . . 4 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0) |
| 10 | fxnn0nninf.g | . . . . . . . 8 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 11 | 10 | frechashgf1o 10590 | . . . . . . 7 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 12 | f1ocnv 5546 | . . . . . . 7 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ◡𝐺:ℕ0–1-1-onto→ω |
| 14 | f1of 5533 | . . . . . 6 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ◡𝐺:ℕ0⟶ω |
| 16 | fvco3 5662 | . . . . 5 ⊢ ((◡𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0))) | |
| 17 | 15, 4, 16 | mp2an 426 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0)) |
| 18 | 2, 9, 17 | 3eqtri 2231 | . . 3 ⊢ (𝐼‘0) = (𝐹‘(◡𝐺‘0)) |
| 19 | 0zd 9399 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℤ) | |
| 20 | 19, 10 | frec2uz0d 10561 | . . . . . 6 ⊢ (⊤ → (𝐺‘∅) = 0) |
| 21 | 20 | mptru 1382 | . . . . 5 ⊢ (𝐺‘∅) = 0 |
| 22 | peano1 4649 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 23 | f1ocnvfv 5860 | . . . . . 6 ⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) | |
| 24 | 11, 22, 23 | mp2an 426 | . . . . 5 ⊢ ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅) |
| 25 | 21, 24 | ax-mp 5 | . . . 4 ⊢ (◡𝐺‘0) = ∅ |
| 26 | 25 | fveq2i 5591 | . . 3 ⊢ (𝐹‘(◡𝐺‘0)) = (𝐹‘∅) |
| 27 | eleq2 2270 | . . . . . . 7 ⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) | |
| 28 | 27 | ifbid 3596 | . . . . . 6 ⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅)) |
| 29 | 28 | mpteq2dv 4142 | . . . . 5 ⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
| 30 | fxnn0nninf.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 31 | omex 4648 | . . . . . 6 ⊢ ω ∈ V | |
| 32 | 31 | mptex 5822 | . . . . 5 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ V |
| 33 | 29, 30, 32 | fvmpt3i 5671 | . . . 4 ⊢ (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
| 34 | 22, 33 | ax-mp 5 | . . 3 ⊢ (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
| 35 | 18, 26, 34 | 3eqtri 2231 | . 2 ⊢ (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
| 36 | noel 3468 | . . . 4 ⊢ ¬ 𝑖 ∈ ∅ | |
| 37 | 36 | iffalsei 3584 | . . 3 ⊢ if(𝑖 ∈ ∅, 1o, ∅) = ∅ |
| 38 | 37 | mpteq2i 4138 | . 2 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅) |
| 39 | eqidd 2207 | . . 3 ⊢ (𝑖 = 𝑥 → ∅ = ∅) | |
| 40 | 39 | cbvmptv 4147 | . 2 ⊢ (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅) |
| 41 | 35, 38, 40 | 3eqtri 2231 | 1 ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 ≠ wne 2377 ∪ cun 3168 ∅c0 3464 ifcif 3575 {csn 3637 〈cop 3640 ↦ cmpt 4112 ωcom 4645 × cxp 4680 ◡ccnv 4681 ∘ ccom 4686 ⟶wf 5275 –1-1-onto→wf1o 5278 ‘cfv 5279 (class class class)co 5956 freccfrec 6488 1oc1o 6507 0cc0 7940 1c1 7941 + caddc 7943 +∞cpnf 8119 ℕ0cn0 9310 ℕ0*cxnn0 9373 ℤcz 9387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-recs 6403 df-frec 6489 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-n0 9311 df-xnn0 9374 df-z 9388 df-uz 9664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |