Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0tonninf | GIF version |
Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
Ref | Expression |
---|---|
0tonninf | ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.i | . . . . 5 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
2 | 1 | fveq1i 5508 | . . . 4 ⊢ (𝐼‘0) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) |
3 | 0xnn0 9218 | . . . . 5 ⊢ 0 ∈ ℕ0* | |
4 | 0nn0 9164 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
5 | nn0nepnf 9220 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 0 ≠ +∞ |
7 | 6 | necomi 2430 | . . . . 5 ⊢ +∞ ≠ 0 |
8 | fvunsng 5702 | . . . . 5 ⊢ ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0)) | |
9 | 3, 7, 8 | mp2an 426 | . . . 4 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0) |
10 | fxnn0nninf.g | . . . . . . . 8 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
11 | 10 | frechashgf1o 10398 | . . . . . . 7 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
12 | f1ocnv 5466 | . . . . . . 7 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ◡𝐺:ℕ0–1-1-onto→ω |
14 | f1of 5453 | . . . . . 6 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ◡𝐺:ℕ0⟶ω |
16 | fvco3 5579 | . . . . 5 ⊢ ((◡𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0))) | |
17 | 15, 4, 16 | mp2an 426 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0)) |
18 | 2, 9, 17 | 3eqtri 2200 | . . 3 ⊢ (𝐼‘0) = (𝐹‘(◡𝐺‘0)) |
19 | 0zd 9238 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℤ) | |
20 | 19, 10 | frec2uz0d 10369 | . . . . . 6 ⊢ (⊤ → (𝐺‘∅) = 0) |
21 | 20 | mptru 1362 | . . . . 5 ⊢ (𝐺‘∅) = 0 |
22 | peano1 4587 | . . . . . 6 ⊢ ∅ ∈ ω | |
23 | f1ocnvfv 5770 | . . . . . 6 ⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) | |
24 | 11, 22, 23 | mp2an 426 | . . . . 5 ⊢ ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅) |
25 | 21, 24 | ax-mp 5 | . . . 4 ⊢ (◡𝐺‘0) = ∅ |
26 | 25 | fveq2i 5510 | . . 3 ⊢ (𝐹‘(◡𝐺‘0)) = (𝐹‘∅) |
27 | eleq2 2239 | . . . . . . 7 ⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) | |
28 | 27 | ifbid 3553 | . . . . . 6 ⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅)) |
29 | 28 | mpteq2dv 4089 | . . . . 5 ⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
30 | fxnn0nninf.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
31 | omex 4586 | . . . . . 6 ⊢ ω ∈ V | |
32 | 31 | mptex 5734 | . . . . 5 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ V |
33 | 29, 30, 32 | fvmpt3i 5588 | . . . 4 ⊢ (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
34 | 22, 33 | ax-mp 5 | . . 3 ⊢ (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
35 | 18, 26, 34 | 3eqtri 2200 | . 2 ⊢ (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
36 | noel 3424 | . . . 4 ⊢ ¬ 𝑖 ∈ ∅ | |
37 | 36 | iffalsei 3541 | . . 3 ⊢ if(𝑖 ∈ ∅, 1o, ∅) = ∅ |
38 | 37 | mpteq2i 4085 | . 2 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅) |
39 | eqidd 2176 | . . 3 ⊢ (𝑖 = 𝑥 → ∅ = ∅) | |
40 | 39 | cbvmptv 4094 | . 2 ⊢ (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅) |
41 | 35, 38, 40 | 3eqtri 2200 | 1 ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ⊤wtru 1354 ∈ wcel 2146 ≠ wne 2345 ∪ cun 3125 ∅c0 3420 ifcif 3532 {csn 3589 〈cop 3592 ↦ cmpt 4059 ωcom 4583 × cxp 4618 ◡ccnv 4619 ∘ ccom 4624 ⟶wf 5204 –1-1-onto→wf1o 5207 ‘cfv 5208 (class class class)co 5865 freccfrec 6381 1oc1o 6400 0cc0 7786 1c1 7787 + caddc 7789 +∞cpnf 7963 ℕ0cn0 9149 ℕ0*cxnn0 9212 ℤcz 9226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-xnn0 9213 df-z 9227 df-uz 9502 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |