![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0tonninf | GIF version |
Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {⟨+∞, (ω × {1o})⟩}) |
Ref | Expression |
---|---|
0tonninf | ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.i | . . . . 5 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {⟨+∞, (ω × {1o})⟩}) | |
2 | 1 | fveq1i 5518 | . . . 4 ⊢ (𝐼‘0) = (((𝐹 ∘ ◡𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) |
3 | 0xnn0 9247 | . . . . 5 ⊢ 0 ∈ ℕ0* | |
4 | 0nn0 9193 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
5 | nn0nepnf 9249 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 0 ≠ +∞ |
7 | 6 | necomi 2432 | . . . . 5 ⊢ +∞ ≠ 0 |
8 | fvunsng 5712 | . . . . 5 ⊢ ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹 ∘ ◡𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹 ∘ ◡𝐺)‘0)) | |
9 | 3, 7, 8 | mp2an 426 | . . . 4 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘0) = ((𝐹 ∘ ◡𝐺)‘0) |
10 | fxnn0nninf.g | . . . . . . . 8 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
11 | 10 | frechashgf1o 10430 | . . . . . . 7 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
12 | f1ocnv 5476 | . . . . . . 7 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ◡𝐺:ℕ0–1-1-onto→ω |
14 | f1of 5463 | . . . . . 6 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ◡𝐺:ℕ0⟶ω |
16 | fvco3 5589 | . . . . 5 ⊢ ((◡𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0))) | |
17 | 15, 4, 16 | mp2an 426 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0)) |
18 | 2, 9, 17 | 3eqtri 2202 | . . 3 ⊢ (𝐼‘0) = (𝐹‘(◡𝐺‘0)) |
19 | 0zd 9267 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℤ) | |
20 | 19, 10 | frec2uz0d 10401 | . . . . . 6 ⊢ (⊤ → (𝐺‘∅) = 0) |
21 | 20 | mptru 1362 | . . . . 5 ⊢ (𝐺‘∅) = 0 |
22 | peano1 4595 | . . . . . 6 ⊢ ∅ ∈ ω | |
23 | f1ocnvfv 5782 | . . . . . 6 ⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) | |
24 | 11, 22, 23 | mp2an 426 | . . . . 5 ⊢ ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅) |
25 | 21, 24 | ax-mp 5 | . . . 4 ⊢ (◡𝐺‘0) = ∅ |
26 | 25 | fveq2i 5520 | . . 3 ⊢ (𝐹‘(◡𝐺‘0)) = (𝐹‘∅) |
27 | eleq2 2241 | . . . . . . 7 ⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) | |
28 | 27 | ifbid 3557 | . . . . . 6 ⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅)) |
29 | 28 | mpteq2dv 4096 | . . . . 5 ⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
30 | fxnn0nninf.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
31 | omex 4594 | . . . . . 6 ⊢ ω ∈ V | |
32 | 31 | mptex 5744 | . . . . 5 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ V |
33 | 29, 30, 32 | fvmpt3i 5598 | . . . 4 ⊢ (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
34 | 22, 33 | ax-mp 5 | . . 3 ⊢ (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
35 | 18, 26, 34 | 3eqtri 2202 | . 2 ⊢ (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
36 | noel 3428 | . . . 4 ⊢ ¬ 𝑖 ∈ ∅ | |
37 | 36 | iffalsei 3545 | . . 3 ⊢ if(𝑖 ∈ ∅, 1o, ∅) = ∅ |
38 | 37 | mpteq2i 4092 | . 2 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅) |
39 | eqidd 2178 | . . 3 ⊢ (𝑖 = 𝑥 → ∅ = ∅) | |
40 | 39 | cbvmptv 4101 | . 2 ⊢ (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅) |
41 | 35, 38, 40 | 3eqtri 2202 | 1 ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 ≠ wne 2347 ∪ cun 3129 ∅c0 3424 ifcif 3536 {csn 3594 ⟨cop 3597 ↦ cmpt 4066 ωcom 4591 × cxp 4626 ◡ccnv 4627 ∘ ccom 4632 ⟶wf 5214 –1-1-onto→wf1o 5217 ‘cfv 5218 (class class class)co 5877 freccfrec 6393 1oc1o 6412 0cc0 7813 1c1 7814 + caddc 7816 +∞cpnf 7991 ℕ0cn0 9178 ℕ0*cxnn0 9241 ℤcz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-xnn0 9242 df-z 9256 df-uz 9531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |