Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0tonninf | GIF version |
Description: The mapping of zero into ℕ∞ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
Ref | Expression |
---|---|
0tonninf | ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.i | . . . . 5 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
2 | 1 | fveq1i 5487 | . . . 4 ⊢ (𝐼‘0) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) |
3 | 0xnn0 9183 | . . . . 5 ⊢ 0 ∈ ℕ0* | |
4 | 0nn0 9129 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
5 | nn0nepnf 9185 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ 0 ≠ +∞ |
7 | 6 | necomi 2421 | . . . . 5 ⊢ +∞ ≠ 0 |
8 | fvunsng 5679 | . . . . 5 ⊢ ((0 ∈ ℕ0* ∧ +∞ ≠ 0) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0)) | |
9 | 3, 7, 8 | mp2an 423 | . . . 4 ⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉})‘0) = ((𝐹 ∘ ◡𝐺)‘0) |
10 | fxnn0nninf.g | . . . . . . . 8 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
11 | 10 | frechashgf1o 10363 | . . . . . . 7 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
12 | f1ocnv 5445 | . . . . . . 7 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ◡𝐺:ℕ0–1-1-onto→ω |
14 | f1of 5432 | . . . . . 6 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ◡𝐺:ℕ0⟶ω |
16 | fvco3 5557 | . . . . 5 ⊢ ((◡𝐺:ℕ0⟶ω ∧ 0 ∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0))) | |
17 | 15, 4, 16 | mp2an 423 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺)‘0) = (𝐹‘(◡𝐺‘0)) |
18 | 2, 9, 17 | 3eqtri 2190 | . . 3 ⊢ (𝐼‘0) = (𝐹‘(◡𝐺‘0)) |
19 | 0zd 9203 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℤ) | |
20 | 19, 10 | frec2uz0d 10334 | . . . . . 6 ⊢ (⊤ → (𝐺‘∅) = 0) |
21 | 20 | mptru 1352 | . . . . 5 ⊢ (𝐺‘∅) = 0 |
22 | peano1 4571 | . . . . . 6 ⊢ ∅ ∈ ω | |
23 | f1ocnvfv 5747 | . . . . . 6 ⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) | |
24 | 11, 22, 23 | mp2an 423 | . . . . 5 ⊢ ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅) |
25 | 21, 24 | ax-mp 5 | . . . 4 ⊢ (◡𝐺‘0) = ∅ |
26 | 25 | fveq2i 5489 | . . 3 ⊢ (𝐹‘(◡𝐺‘0)) = (𝐹‘∅) |
27 | eleq2 2230 | . . . . . . 7 ⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) | |
28 | 27 | ifbid 3541 | . . . . . 6 ⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅)) |
29 | 28 | mpteq2dv 4073 | . . . . 5 ⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
30 | fxnn0nninf.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
31 | omex 4570 | . . . . . 6 ⊢ ω ∈ V | |
32 | 31 | mptex 5711 | . . . . 5 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ V |
33 | 29, 30, 32 | fvmpt3i 5566 | . . . 4 ⊢ (∅ ∈ ω → (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) |
34 | 22, 33 | ax-mp 5 | . . 3 ⊢ (𝐹‘∅) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
35 | 18, 26, 34 | 3eqtri 2190 | . 2 ⊢ (𝐼‘0) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) |
36 | noel 3413 | . . . 4 ⊢ ¬ 𝑖 ∈ ∅ | |
37 | 36 | iffalsei 3529 | . . 3 ⊢ if(𝑖 ∈ ∅, 1o, ∅) = ∅ |
38 | 37 | mpteq2i 4069 | . 2 ⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅) |
39 | eqidd 2166 | . . 3 ⊢ (𝑖 = 𝑥 → ∅ = ∅) | |
40 | 39 | cbvmptv 4078 | . 2 ⊢ (𝑖 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅) |
41 | 35, 38, 40 | 3eqtri 2190 | 1 ⊢ (𝐼‘0) = (𝑥 ∈ ω ↦ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 ≠ wne 2336 ∪ cun 3114 ∅c0 3409 ifcif 3520 {csn 3576 〈cop 3579 ↦ cmpt 4043 ωcom 4567 × cxp 4602 ◡ccnv 4603 ∘ ccom 4608 ⟶wf 5184 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 freccfrec 6358 1oc1o 6377 0cc0 7753 1c1 7754 + caddc 7756 +∞cpnf 7930 ℕ0cn0 9114 ℕ0*cxnn0 9177 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-xnn0 9178 df-z 9192 df-uz 9467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |