Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst GIF version

Theorem dcapnconst 14778
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 14761 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 14777 and in fact this theorem can be proved using dceqnconst 14777 as shown at dcapnconstALT 14779. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ βˆƒπ‘“(𝑓:β„βŸΆβ„€ ∧ (π‘“β€˜0) = 0 ∧ βˆ€π‘₯ ∈ ℝ+ (π‘“β€˜π‘₯) β‰  0))
Distinct variable group:   π‘₯,𝑓

Proof of Theorem dcapnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7944 . . . 4 ℝ ∈ V
21mptex 5742 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V
32a1i 9 . 2 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V)
4 1zzd 9279 . . . . 5 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑦 ∈ ℝ) β†’ 1 ∈ β„€)
5 0zd 9264 . . . . 5 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑦 ∈ ℝ) β†’ 0 ∈ β„€)
6 breq1 4006 . . . . . . 7 (π‘₯ = 𝑦 β†’ (π‘₯ # 0 ↔ 𝑦 # 0))
76dcbid 838 . . . . . 6 (π‘₯ = 𝑦 β†’ (DECID π‘₯ # 0 ↔ DECID 𝑦 # 0))
87rspccva 2840 . . . . 5 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑦 ∈ ℝ) β†’ DECID 𝑦 # 0)
94, 5, 8ifcldcd 3570 . . . 4 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑦 ∈ ℝ) β†’ if(𝑦 # 0, 1, 0) ∈ β„€)
109fmpttd 5671 . . 3 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):β„βŸΆβ„€)
11 0re 7956 . . . . . 6 0 ∈ ℝ
12 1zzd 9279 . . . . . . . 8 (⊀ β†’ 1 ∈ β„€)
13 0zd 9264 . . . . . . . 8 (⊀ β†’ 0 ∈ β„€)
14 0cn 7948 . . . . . . . . . . . 12 0 ∈ β„‚
15 apirr 8561 . . . . . . . . . . . 12 (0 ∈ β„‚ β†’ Β¬ 0 # 0)
1614, 15ax-mp 5 . . . . . . . . . . 11 Β¬ 0 # 0
1716olci 732 . . . . . . . . . 10 (0 # 0 ∨ Β¬ 0 # 0)
18 df-dc 835 . . . . . . . . . 10 (DECID 0 # 0 ↔ (0 # 0 ∨ Β¬ 0 # 0))
1917, 18mpbir 146 . . . . . . . . 9 DECID 0 # 0
2019a1i 9 . . . . . . . 8 (⊀ β†’ DECID 0 # 0)
2112, 13, 20ifcldcd 3570 . . . . . . 7 (⊀ β†’ if(0 # 0, 1, 0) ∈ β„€)
2221mptru 1362 . . . . . 6 if(0 # 0, 1, 0) ∈ β„€
23 breq1 4006 . . . . . . . 8 (𝑦 = 0 β†’ (𝑦 # 0 ↔ 0 # 0))
2423ifbid 3555 . . . . . . 7 (𝑦 = 0 β†’ if(𝑦 # 0, 1, 0) = if(0 # 0, 1, 0))
25 eqid 2177 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))
2624, 25fvmptg 5592 . . . . . 6 ((0 ∈ ℝ ∧ if(0 # 0, 1, 0) ∈ β„€) β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = if(0 # 0, 1, 0))
2711, 22, 26mp2an 426 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = if(0 # 0, 1, 0)
2816iffalsei 3543 . . . . 5 if(0 # 0, 1, 0) = 0
2927, 28eqtri 2198 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = 0
3029a1i 9 . . 3 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = 0)
31 1ne0 8986 . . . . . 6 1 β‰  0
32 breq1 4006 . . . . . . . . . 10 (𝑦 = 𝑧 β†’ (𝑦 # 0 ↔ 𝑧 # 0))
3332ifbid 3555 . . . . . . . . 9 (𝑦 = 𝑧 β†’ if(𝑦 # 0, 1, 0) = if(𝑧 # 0, 1, 0))
34 rpre 9659 . . . . . . . . . 10 (𝑧 ∈ ℝ+ β†’ 𝑧 ∈ ℝ)
3534adantl 277 . . . . . . . . 9 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ 𝑧 ∈ ℝ)
36 1zzd 9279 . . . . . . . . . 10 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ 1 ∈ β„€)
37 0zd 9264 . . . . . . . . . 10 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ 0 ∈ β„€)
38 breq1 4006 . . . . . . . . . . . 12 (π‘₯ = 𝑧 β†’ (π‘₯ # 0 ↔ 𝑧 # 0))
3938dcbid 838 . . . . . . . . . . 11 (π‘₯ = 𝑧 β†’ (DECID π‘₯ # 0 ↔ DECID 𝑧 # 0))
40 simpl 109 . . . . . . . . . . 11 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0)
4139, 40, 35rspcdva 2846 . . . . . . . . . 10 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ DECID 𝑧 # 0)
4236, 37, 41ifcldcd 3570 . . . . . . . . 9 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ if(𝑧 # 0, 1, 0) ∈ β„€)
4325, 33, 35, 42fvmptd3 5609 . . . . . . . 8 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) = if(𝑧 # 0, 1, 0))
44 rpap0 9669 . . . . . . . . . 10 (𝑧 ∈ ℝ+ β†’ 𝑧 # 0)
4544iftrued 3541 . . . . . . . . 9 (𝑧 ∈ ℝ+ β†’ if(𝑧 # 0, 1, 0) = 1)
4645adantl 277 . . . . . . . 8 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ if(𝑧 # 0, 1, 0) = 1)
4743, 46eqtrd 2210 . . . . . . 7 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) = 1)
4847neeq1d 2365 . . . . . 6 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) β‰  0 ↔ 1 β‰  0))
4931, 48mpbiri 168 . . . . 5 ((βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 ∧ 𝑧 ∈ ℝ+) β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) β‰  0)
5049ralrimiva 2550 . . . 4 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ βˆ€π‘§ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) β‰  0)
51 fveq2 5515 . . . . . 6 (𝑧 = π‘₯ β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯))
5251neeq1d 2365 . . . . 5 (𝑧 = π‘₯ β†’ (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) β‰  0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0))
5352cbvralv 2703 . . . 4 (βˆ€π‘§ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘§) β‰  0 ↔ βˆ€π‘₯ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0)
5450, 53sylib 122 . . 3 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ βˆ€π‘₯ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0)
5510, 30, 543jca 1177 . 2 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):β„βŸΆβ„€ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = 0 ∧ βˆ€π‘₯ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0))
56 feq1 5348 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ (𝑓:β„βŸΆβ„€ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):β„βŸΆβ„€))
57 fveq1 5514 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ (π‘“β€˜0) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0))
5857eqeq1d 2186 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ ((π‘“β€˜0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = 0))
59 fveq1 5514 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ (π‘“β€˜π‘₯) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯))
6059neeq1d 2365 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ ((π‘“β€˜π‘₯) β‰  0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0))
6160ralbidv 2477 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ (βˆ€π‘₯ ∈ ℝ+ (π‘“β€˜π‘₯) β‰  0 ↔ βˆ€π‘₯ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0))
6256, 58, 613anbi123d 1312 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) β†’ ((𝑓:β„βŸΆβ„€ ∧ (π‘“β€˜0) = 0 ∧ βˆ€π‘₯ ∈ ℝ+ (π‘“β€˜π‘₯) β‰  0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):β„βŸΆβ„€ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜0) = 0 ∧ βˆ€π‘₯ ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))β€˜π‘₯) β‰  0)))
633, 55, 62elabd 2882 1 (βˆ€π‘₯ ∈ ℝ DECID π‘₯ # 0 β†’ βˆƒπ‘“(𝑓:β„βŸΆβ„€ ∧ (π‘“β€˜0) = 0 ∧ βˆ€π‘₯ ∈ ℝ+ (π‘“β€˜π‘₯) β‰  0))
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ∨ wo 708  DECID wdc 834   ∧ w3a 978   = wceq 1353  βŠ€wtru 1354  βˆƒwex 1492   ∈ wcel 2148   β‰  wne 2347  βˆ€wral 2455  Vcvv 2737  ifcif 3534   class class class wbr 4003   ↦ cmpt 4064  βŸΆwf 5212  β€˜cfv 5216  β„‚cc 7808  β„cr 7809  0cc0 7810  1c1 7811   # cap 8537  β„€cz 9252  β„+crp 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-inn 8919  df-z 9253  df-rp 9653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator