Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst GIF version

Theorem dcapnconst 16074
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 16056 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 16073 and in fact this theorem can be proved using dceqnconst 16073 as shown at dcapnconstALT 16075. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dcapnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8066 . . . 4 ℝ ∈ V
21mptex 5817 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V
32a1i 9 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V)
4 1zzd 9406 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 1 ∈ ℤ)
5 0zd 9391 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 0 ∈ ℤ)
6 breq1 4050 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 # 0 ↔ 𝑦 # 0))
76dcbid 840 . . . . . 6 (𝑥 = 𝑦 → (DECID 𝑥 # 0 ↔ DECID 𝑦 # 0))
87rspccva 2877 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → DECID 𝑦 # 0)
94, 5, 8ifcldcd 3609 . . . 4 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 # 0, 1, 0) ∈ ℤ)
109fmpttd 5742 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ)
11 0re 8079 . . . . . 6 0 ∈ ℝ
12 1zzd 9406 . . . . . . . 8 (⊤ → 1 ∈ ℤ)
13 0zd 9391 . . . . . . . 8 (⊤ → 0 ∈ ℤ)
14 0cn 8071 . . . . . . . . . . . 12 0 ∈ ℂ
15 apirr 8685 . . . . . . . . . . . 12 (0 ∈ ℂ → ¬ 0 # 0)
1614, 15ax-mp 5 . . . . . . . . . . 11 ¬ 0 # 0
1716olci 734 . . . . . . . . . 10 (0 # 0 ∨ ¬ 0 # 0)
18 df-dc 837 . . . . . . . . . 10 (DECID 0 # 0 ↔ (0 # 0 ∨ ¬ 0 # 0))
1917, 18mpbir 146 . . . . . . . . 9 DECID 0 # 0
2019a1i 9 . . . . . . . 8 (⊤ → DECID 0 # 0)
2112, 13, 20ifcldcd 3609 . . . . . . 7 (⊤ → if(0 # 0, 1, 0) ∈ ℤ)
2221mptru 1382 . . . . . 6 if(0 # 0, 1, 0) ∈ ℤ
23 breq1 4050 . . . . . . . 8 (𝑦 = 0 → (𝑦 # 0 ↔ 0 # 0))
2423ifbid 3593 . . . . . . 7 (𝑦 = 0 → if(𝑦 # 0, 1, 0) = if(0 # 0, 1, 0))
25 eqid 2206 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))
2624, 25fvmptg 5662 . . . . . 6 ((0 ∈ ℝ ∧ if(0 # 0, 1, 0) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 # 0, 1, 0))
2711, 22, 26mp2an 426 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 # 0, 1, 0)
2816iffalsei 3581 . . . . 5 if(0 # 0, 1, 0) = 0
2927, 28eqtri 2227 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0
3029a1i 9 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0)
31 1ne0 9111 . . . . . 6 1 ≠ 0
32 breq1 4050 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 # 0 ↔ 𝑧 # 0))
3332ifbid 3593 . . . . . . . . 9 (𝑦 = 𝑧 → if(𝑦 # 0, 1, 0) = if(𝑧 # 0, 1, 0))
34 rpre 9789 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
3534adantl 277 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
36 1zzd 9406 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℤ)
37 0zd 9391 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈ ℤ)
38 breq1 4050 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
3938dcbid 840 . . . . . . . . . . 11 (𝑥 = 𝑧 → (DECID 𝑥 # 0 ↔ DECID 𝑧 # 0))
40 simpl 109 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ∀𝑥 ∈ ℝ DECID 𝑥 # 0)
4139, 40, 35rspcdva 2883 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → DECID 𝑧 # 0)
4236, 37, 41ifcldcd 3609 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) ∈ ℤ)
4325, 33, 35, 42fvmptd3 5680 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = if(𝑧 # 0, 1, 0))
44 rpap0 9799 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 # 0)
4544iftrued 3579 . . . . . . . . 9 (𝑧 ∈ ℝ+ → if(𝑧 # 0, 1, 0) = 1)
4645adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) = 1)
4743, 46eqtrd 2239 . . . . . . 7 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = 1)
4847neeq1d 2395 . . . . . 6 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ 1 ≠ 0))
4931, 48mpbiri 168 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0)
5049ralrimiva 2580 . . . 4 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0)
51 fveq2 5583 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥))
5251neeq1d 2395 . . . . 5 (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
5352cbvralv 2739 . . . 4 (∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)
5450, 53sylib 122 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)
5510, 30, 543jca 1180 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
56 feq1 5414 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ))
57 fveq1 5582 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0))
5857eqeq1d 2215 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0))
59 fveq1 5582 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥))
6059neeq1d 2395 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
6160ralbidv 2507 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
6256, 58, 613anbi123d 1325 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)))
633, 55, 62elabd 2919 1 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wtru 1374  wex 1516  wcel 2177  wne 2377  wral 2485  Vcvv 2773  ifcif 3572   class class class wbr 4047  cmpt 4109  wf 5272  cfv 5276  cc 7930  cr 7931  0cc0 7932  1c1 7933   # cap 8661  cz 9379  +crp 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-inn 9044  df-z 9380  df-rp 9783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator