Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst GIF version

Theorem dcapnconst 13939
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 13922 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 13938 and in fact this theorem can be proved using dceqnconst 13938 as shown at dcapnconstALT 13940. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dcapnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7887 . . . 4 ℝ ∈ V
21mptex 5711 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V
32a1i 9 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V)
4 1zzd 9218 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 1 ∈ ℤ)
5 0zd 9203 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 0 ∈ ℤ)
6 breq1 3985 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 # 0 ↔ 𝑦 # 0))
76dcbid 828 . . . . . 6 (𝑥 = 𝑦 → (DECID 𝑥 # 0 ↔ DECID 𝑦 # 0))
87rspccva 2829 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → DECID 𝑦 # 0)
94, 5, 8ifcldcd 3555 . . . 4 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 # 0, 1, 0) ∈ ℤ)
109fmpttd 5640 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ)
11 0re 7899 . . . . . 6 0 ∈ ℝ
12 1zzd 9218 . . . . . . . 8 (⊤ → 1 ∈ ℤ)
13 0zd 9203 . . . . . . . 8 (⊤ → 0 ∈ ℤ)
14 0cn 7891 . . . . . . . . . . . 12 0 ∈ ℂ
15 apirr 8503 . . . . . . . . . . . 12 (0 ∈ ℂ → ¬ 0 # 0)
1614, 15ax-mp 5 . . . . . . . . . . 11 ¬ 0 # 0
1716olci 722 . . . . . . . . . 10 (0 # 0 ∨ ¬ 0 # 0)
18 df-dc 825 . . . . . . . . . 10 (DECID 0 # 0 ↔ (0 # 0 ∨ ¬ 0 # 0))
1917, 18mpbir 145 . . . . . . . . 9 DECID 0 # 0
2019a1i 9 . . . . . . . 8 (⊤ → DECID 0 # 0)
2112, 13, 20ifcldcd 3555 . . . . . . 7 (⊤ → if(0 # 0, 1, 0) ∈ ℤ)
2221mptru 1352 . . . . . 6 if(0 # 0, 1, 0) ∈ ℤ
23 breq1 3985 . . . . . . . 8 (𝑦 = 0 → (𝑦 # 0 ↔ 0 # 0))
2423ifbid 3541 . . . . . . 7 (𝑦 = 0 → if(𝑦 # 0, 1, 0) = if(0 # 0, 1, 0))
25 eqid 2165 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))
2624, 25fvmptg 5562 . . . . . 6 ((0 ∈ ℝ ∧ if(0 # 0, 1, 0) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 # 0, 1, 0))
2711, 22, 26mp2an 423 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 # 0, 1, 0)
2816iffalsei 3529 . . . . 5 if(0 # 0, 1, 0) = 0
2927, 28eqtri 2186 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0
3029a1i 9 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0)
31 1ne0 8925 . . . . . 6 1 ≠ 0
32 breq1 3985 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 # 0 ↔ 𝑧 # 0))
3332ifbid 3541 . . . . . . . . 9 (𝑦 = 𝑧 → if(𝑦 # 0, 1, 0) = if(𝑧 # 0, 1, 0))
34 rpre 9596 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
3534adantl 275 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
36 1zzd 9218 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℤ)
37 0zd 9203 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈ ℤ)
38 breq1 3985 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
3938dcbid 828 . . . . . . . . . . 11 (𝑥 = 𝑧 → (DECID 𝑥 # 0 ↔ DECID 𝑧 # 0))
40 simpl 108 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ∀𝑥 ∈ ℝ DECID 𝑥 # 0)
4139, 40, 35rspcdva 2835 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → DECID 𝑧 # 0)
4236, 37, 41ifcldcd 3555 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) ∈ ℤ)
4325, 33, 35, 42fvmptd3 5579 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = if(𝑧 # 0, 1, 0))
44 rpap0 9606 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 # 0)
4544iftrued 3527 . . . . . . . . 9 (𝑧 ∈ ℝ+ → if(𝑧 # 0, 1, 0) = 1)
4645adantl 275 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) = 1)
4743, 46eqtrd 2198 . . . . . . 7 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = 1)
4847neeq1d 2354 . . . . . 6 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ 1 ≠ 0))
4931, 48mpbiri 167 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0)
5049ralrimiva 2539 . . . 4 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0)
51 fveq2 5486 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥))
5251neeq1d 2354 . . . . 5 (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
5352cbvralv 2692 . . . 4 (∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)
5450, 53sylib 121 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)
5510, 30, 543jca 1167 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
56 feq1 5320 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ))
57 fveq1 5485 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0))
5857eqeq1d 2174 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0))
59 fveq1 5485 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥))
6059neeq1d 2354 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
6160ralbidv 2466 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
6256, 58, 613anbi123d 1302 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)))
633, 55, 62elabd 2871 1 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wtru 1344  wex 1480  wcel 2136  wne 2336  wral 2444  Vcvv 2726  ifcif 3520   class class class wbr 3982  cmpt 4043  wf 5184  cfv 5188  cc 7751  cr 7752  0cc0 7753  1c1 7754   # cap 8479  cz 9191  +crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-inn 8858  df-z 9192  df-rp 9590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator