Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst GIF version

Theorem dcapnconst 14092
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 14075 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 14091 and in fact this theorem can be proved using dceqnconst 14091 as shown at dcapnconstALT 14093. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dcapnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7908 . . . 4 ℝ ∈ V
21mptex 5722 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V
32a1i 9 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V)
4 1zzd 9239 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 1 ∈ ℤ)
5 0zd 9224 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 0 ∈ ℤ)
6 breq1 3992 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 # 0 ↔ 𝑦 # 0))
76dcbid 833 . . . . . 6 (𝑥 = 𝑦 → (DECID 𝑥 # 0 ↔ DECID 𝑦 # 0))
87rspccva 2833 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → DECID 𝑦 # 0)
94, 5, 8ifcldcd 3561 . . . 4 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 # 0, 1, 0) ∈ ℤ)
109fmpttd 5651 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ)
11 0re 7920 . . . . . 6 0 ∈ ℝ
12 1zzd 9239 . . . . . . . 8 (⊤ → 1 ∈ ℤ)
13 0zd 9224 . . . . . . . 8 (⊤ → 0 ∈ ℤ)
14 0cn 7912 . . . . . . . . . . . 12 0 ∈ ℂ
15 apirr 8524 . . . . . . . . . . . 12 (0 ∈ ℂ → ¬ 0 # 0)
1614, 15ax-mp 5 . . . . . . . . . . 11 ¬ 0 # 0
1716olci 727 . . . . . . . . . 10 (0 # 0 ∨ ¬ 0 # 0)
18 df-dc 830 . . . . . . . . . 10 (DECID 0 # 0 ↔ (0 # 0 ∨ ¬ 0 # 0))
1917, 18mpbir 145 . . . . . . . . 9 DECID 0 # 0
2019a1i 9 . . . . . . . 8 (⊤ → DECID 0 # 0)
2112, 13, 20ifcldcd 3561 . . . . . . 7 (⊤ → if(0 # 0, 1, 0) ∈ ℤ)
2221mptru 1357 . . . . . 6 if(0 # 0, 1, 0) ∈ ℤ
23 breq1 3992 . . . . . . . 8 (𝑦 = 0 → (𝑦 # 0 ↔ 0 # 0))
2423ifbid 3547 . . . . . . 7 (𝑦 = 0 → if(𝑦 # 0, 1, 0) = if(0 # 0, 1, 0))
25 eqid 2170 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))
2624, 25fvmptg 5572 . . . . . 6 ((0 ∈ ℝ ∧ if(0 # 0, 1, 0) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 # 0, 1, 0))
2711, 22, 26mp2an 424 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 # 0, 1, 0)
2816iffalsei 3535 . . . . 5 if(0 # 0, 1, 0) = 0
2927, 28eqtri 2191 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0
3029a1i 9 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0)
31 1ne0 8946 . . . . . 6 1 ≠ 0
32 breq1 3992 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 # 0 ↔ 𝑧 # 0))
3332ifbid 3547 . . . . . . . . 9 (𝑦 = 𝑧 → if(𝑦 # 0, 1, 0) = if(𝑧 # 0, 1, 0))
34 rpre 9617 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
3534adantl 275 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
36 1zzd 9239 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℤ)
37 0zd 9224 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈ ℤ)
38 breq1 3992 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0))
3938dcbid 833 . . . . . . . . . . 11 (𝑥 = 𝑧 → (DECID 𝑥 # 0 ↔ DECID 𝑧 # 0))
40 simpl 108 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ∀𝑥 ∈ ℝ DECID 𝑥 # 0)
4139, 40, 35rspcdva 2839 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → DECID 𝑧 # 0)
4236, 37, 41ifcldcd 3561 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) ∈ ℤ)
4325, 33, 35, 42fvmptd3 5589 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = if(𝑧 # 0, 1, 0))
44 rpap0 9627 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 # 0)
4544iftrued 3533 . . . . . . . . 9 (𝑧 ∈ ℝ+ → if(𝑧 # 0, 1, 0) = 1)
4645adantl 275 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) = 1)
4743, 46eqtrd 2203 . . . . . . 7 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = 1)
4847neeq1d 2358 . . . . . 6 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ 1 ≠ 0))
4931, 48mpbiri 167 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0)
5049ralrimiva 2543 . . . 4 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0)
51 fveq2 5496 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥))
5251neeq1d 2358 . . . . 5 (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
5352cbvralv 2696 . . . 4 (∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)
5450, 53sylib 121 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)
5510, 30, 543jca 1172 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
56 feq1 5330 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ))
57 fveq1 5495 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0))
5857eqeq1d 2179 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0))
59 fveq1 5495 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥))
6059neeq1d 2358 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
6160ralbidv 2470 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0))
6256, 58, 613anbi123d 1307 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)))
633, 55, 62elabd 2875 1 (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wtru 1349  wex 1485  wcel 2141  wne 2340  wral 2448  Vcvv 2730  ifcif 3526   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  cc 7772  cr 7773  0cc0 7774  1c1 7775   # cap 8500  cz 9212  +crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-inn 8879  df-z 9213  df-rp 9611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator