| Step | Hyp | Ref
| Expression |
| 1 | | reex 8013 |
. . . 4
⊢ ℝ
∈ V |
| 2 | 1 | mptex 5788 |
. . 3
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈
V |
| 3 | 2 | a1i 9 |
. 2
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) ∈ V) |
| 4 | | 1zzd 9353 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 1 ∈
ℤ) |
| 5 | | 0zd 9338 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → 0 ∈
ℤ) |
| 6 | | breq1 4036 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 # 0 ↔ 𝑦 # 0)) |
| 7 | 6 | dcbid 839 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (DECID 𝑥 # 0 ↔ DECID
𝑦 # 0)) |
| 8 | 7 | rspccva 2867 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → DECID
𝑦 # 0) |
| 9 | 4, 5, 8 | ifcldcd 3597 |
. . . 4
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 # 0, 1, 0) ∈ ℤ) |
| 10 | 9 | fmpttd 5717 |
. . 3
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1,
0)):ℝ⟶ℤ) |
| 11 | | 0re 8026 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 12 | | 1zzd 9353 |
. . . . . . . 8
⊢ (⊤
→ 1 ∈ ℤ) |
| 13 | | 0zd 9338 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ ℤ) |
| 14 | | 0cn 8018 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℂ |
| 15 | | apirr 8632 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℂ → ¬ 0 # 0) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ¬ 0
# 0 |
| 17 | 16 | olci 733 |
. . . . . . . . . 10
⊢ (0 # 0
∨ ¬ 0 # 0) |
| 18 | | df-dc 836 |
. . . . . . . . . 10
⊢
(DECID 0 # 0 ↔ (0 # 0 ∨ ¬ 0 #
0)) |
| 19 | 17, 18 | mpbir 146 |
. . . . . . . . 9
⊢
DECID 0 # 0 |
| 20 | 19 | a1i 9 |
. . . . . . . 8
⊢ (⊤
→ DECID 0 # 0) |
| 21 | 12, 13, 20 | ifcldcd 3597 |
. . . . . . 7
⊢ (⊤
→ if(0 # 0, 1, 0) ∈ ℤ) |
| 22 | 21 | mptru 1373 |
. . . . . 6
⊢ if(0 # 0,
1, 0) ∈ ℤ |
| 23 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑦 # 0 ↔ 0 # 0)) |
| 24 | 23 | ifbid 3582 |
. . . . . . 7
⊢ (𝑦 = 0 → if(𝑦 # 0, 1, 0) = if(0 # 0, 1,
0)) |
| 25 | | eqid 2196 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) |
| 26 | 24, 25 | fvmptg 5637 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ if(0 # 0, 1, 0) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 #
0, 1, 0)) |
| 27 | 11, 22, 26 | mp2an 426 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = if(0 #
0, 1, 0) |
| 28 | 16 | iffalsei 3570 |
. . . . 5
⊢ if(0 # 0,
1, 0) = 0 |
| 29 | 27, 28 | eqtri 2217 |
. . . 4
⊢ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) =
0 |
| 30 | 29 | a1i 9 |
. . 3
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0) |
| 31 | | 1ne0 9058 |
. . . . . 6
⊢ 1 ≠
0 |
| 32 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 # 0 ↔ 𝑧 # 0)) |
| 33 | 32 | ifbid 3582 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → if(𝑦 # 0, 1, 0) = if(𝑧 # 0, 1, 0)) |
| 34 | | rpre 9735 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ) |
| 35 | 34 | adantl 277 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈
ℝ) |
| 36 | | 1zzd 9353 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈
ℤ) |
| 37 | | 0zd 9338 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈
ℤ) |
| 38 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 # 0 ↔ 𝑧 # 0)) |
| 39 | 38 | dcbid 839 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (DECID 𝑥 # 0 ↔ DECID
𝑧 # 0)) |
| 40 | | simpl 109 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) →
∀𝑥 ∈ ℝ
DECID 𝑥 #
0) |
| 41 | 39, 40, 35 | rspcdva 2873 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) →
DECID 𝑧 #
0) |
| 42 | 36, 37, 41 | ifcldcd 3597 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) ∈
ℤ) |
| 43 | 25, 33, 35, 42 | fvmptd3 5655 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = if(𝑧 # 0, 1, 0)) |
| 44 | | rpap0 9745 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ+
→ 𝑧 #
0) |
| 45 | 44 | iftrued 3568 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ if(𝑧 # 0, 1, 0) =
1) |
| 46 | 45 | adantl 277 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 # 0, 1, 0) =
1) |
| 47 | 43, 46 | eqtrd 2229 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = 1) |
| 48 | 47 | neeq1d 2385 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ 1 ≠
0)) |
| 49 | 31, 48 | mpbiri 168 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 # 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0) |
| 50 | 49 | ralrimiva 2570 |
. . . 4
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0) |
| 51 | | fveq2 5558 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥)) |
| 52 | 51 | neeq1d 2385 |
. . . . 5
⊢ (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)) |
| 53 | 52 | cbvralv 2729 |
. . . 4
⊢
(∀𝑧 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
# 0, 1, 0))‘𝑧) ≠ 0
↔ ∀𝑥 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
# 0, 1, 0))‘𝑥) ≠
0) |
| 54 | 50, 53 | sylib 122 |
. . 3
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0) |
| 55 | 10, 30, 54 | 3jca 1179 |
. 2
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧
((𝑦 ∈ ℝ ↦
if(𝑦 # 0, 1, 0))‘0) =
0 ∧ ∀𝑥 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
# 0, 1, 0))‘𝑥) ≠
0)) |
| 56 | | feq1 5390 |
. . 3
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1,
0)):ℝ⟶ℤ)) |
| 57 | | fveq1 5557 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0)) |
| 58 | 57 | eqeq1d 2205 |
. . 3
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘0) = 0)) |
| 59 | | fveq1 5557 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (𝑓‘𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥)) |
| 60 | 59 | neeq1d 2385 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓‘𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)) |
| 61 | 60 | ralbidv 2497 |
. . 3
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → (∀𝑥 ∈ ℝ+
(𝑓‘𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0))‘𝑥) ≠ 0)) |
| 62 | 56, 58, 61 | 3anbi123d 1323 |
. 2
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧
∀𝑥 ∈
ℝ+ (𝑓‘𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 # 0, 1, 0)):ℝ⟶ℤ ∧
((𝑦 ∈ ℝ ↦
if(𝑦 # 0, 1, 0))‘0) =
0 ∧ ∀𝑥 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
# 0, 1, 0))‘𝑥) ≠
0))) |
| 63 | 3, 55, 62 | elabd 2909 |
1
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧
∀𝑥 ∈
ℝ+ (𝑓‘𝑥) ≠ 0)) |