| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sum0 | GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9746 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9461 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 3 | 0ss 3530 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 6 | 5, 1 | eleqtrdi 2322 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 7 | c0ex 8128 | . . . . . . 7 ⊢ 0 ∈ V | |
| 8 | 7 | fvconst2 5848 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 9 | 6, 8 | syl 14 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | noel 3495 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 11 | 10 | iffalsei 3611 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 12 | 9, 11 | eqtr4di 2280 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 13 | noel 3495 | . . . . . . . 8 ⊢ ¬ 𝑗 ∈ ∅ | |
| 14 | 13 | olci 737 | . . . . . . 7 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
| 15 | df-dc 840 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
| 16 | 14, 15 | mpbir 146 | . . . . . 6 ⊢ DECID 𝑗 ∈ ∅ |
| 17 | 16 | rgenw 2585 | . . . . 5 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
| 18 | 17 | a1i 9 | . . . 4 ⊢ (⊤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
| 19 | 10 | pm2.21i 649 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 20 | 19 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 21 | 1, 2, 4, 12, 18, 20 | zsumdc 11881 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 22 | 21 | mptru 1404 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 23 | fclim 11791 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 24 | ffun 5472 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 25 | 23, 24 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 26 | 1z 9460 | . . . 4 ⊢ 1 ∈ ℤ | |
| 27 | serclim0 11802 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 28 | 26, 27 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 29 | funbrfv 5664 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 30 | 25, 28, 29 | mp2 16 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 31 | 22, 30 | eqtri 2250 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 ifcif 3602 {csn 3666 class class class wbr 4082 × cxp 4714 dom cdm 4716 Fun wfun 5308 ⟶wf 5310 ‘cfv 5314 ℂcc 7985 0cc0 7987 1c1 7988 + caddc 7990 ℕcn 9098 ℤcz 9434 ℤ≥cuz 9710 seqcseq 10656 ⇝ cli 11775 Σcsu 11850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 |
| This theorem is referenced by: isumz 11886 fsumf1o 11887 fsumcllem 11896 fsumadd 11903 fsum2d 11932 fisumrev2 11943 fsummulc2 11945 fsumconst 11951 modfsummod 11955 fsumabs 11962 telfsumo 11963 fsumparts 11967 fsumrelem 11968 fsumiun 11974 isumsplit 11988 arisum 11995 arisum2 11996 cvgratnnlemseq 12023 bitsinv1 12459 gsumfzfsumlem0 14535 fsumcncntop 15226 dvmptfsum 15384 |
| Copyright terms: Public domain | W3C validator |