Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sum0 | GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9468 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 9188 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
3 | 0ss 3432 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
4 | 3 | a1i 9 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
5 | simpr 109 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
6 | 5, 1 | eleqtrdi 2250 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
7 | c0ex 7866 | . . . . . . 7 ⊢ 0 ∈ V | |
8 | 7 | fvconst2 5682 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
9 | 6, 8 | syl 14 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
10 | noel 3398 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
11 | 10 | iffalsei 3514 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
12 | 9, 11 | eqtr4di 2208 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
13 | noel 3398 | . . . . . . . 8 ⊢ ¬ 𝑗 ∈ ∅ | |
14 | 13 | olci 722 | . . . . . . 7 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
15 | df-dc 821 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
16 | 14, 15 | mpbir 145 | . . . . . 6 ⊢ DECID 𝑗 ∈ ∅ |
17 | 16 | rgenw 2512 | . . . . 5 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
18 | 17 | a1i 9 | . . . 4 ⊢ (⊤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
19 | 10 | pm2.21i 636 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
20 | 19 | adantl 275 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
21 | 1, 2, 4, 12, 18, 20 | zsumdc 11274 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
22 | 21 | mptru 1344 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
23 | fclim 11184 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
24 | ffun 5321 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
25 | 23, 24 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
26 | 1z 9187 | . . . 4 ⊢ 1 ∈ ℤ | |
27 | serclim0 11195 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
28 | 26, 27 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
29 | funbrfv 5506 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
30 | 25, 28, 29 | mp2 16 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
31 | 22, 30 | eqtri 2178 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 698 DECID wdc 820 = wceq 1335 ⊤wtru 1336 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 ∅c0 3394 ifcif 3505 {csn 3560 class class class wbr 3965 × cxp 4583 dom cdm 4585 Fun wfun 5163 ⟶wf 5165 ‘cfv 5169 ℂcc 7724 0cc0 7726 1c1 7727 + caddc 7729 ℕcn 8827 ℤcz 9161 ℤ≥cuz 9433 seqcseq 10337 ⇝ cli 11168 Σcsu 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 ax-caucvg 7846 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-frec 6335 df-1o 6360 df-oadd 6364 df-er 6477 df-en 6683 df-dom 6684 df-fin 6685 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-fz 9906 df-fzo 10035 df-seqfrec 10338 df-exp 10412 df-ihash 10643 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-clim 11169 df-sumdc 11244 |
This theorem is referenced by: isumz 11279 fsumf1o 11280 fsumcllem 11289 fsumadd 11296 fsum2d 11325 fisumrev2 11336 fsummulc2 11338 fsumconst 11344 modfsummod 11348 fsumabs 11355 telfsumo 11356 fsumparts 11360 fsumrelem 11361 fsumiun 11367 isumsplit 11381 arisum 11388 arisum2 11389 cvgratnnlemseq 11416 fsumcncntop 12927 |
Copyright terms: Public domain | W3C validator |