| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sum0 | GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9766 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9481 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 3 | 0ss 3530 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 6 | 5, 1 | eleqtrdi 2322 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 7 | c0ex 8148 | . . . . . . 7 ⊢ 0 ∈ V | |
| 8 | 7 | fvconst2 5859 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 9 | 6, 8 | syl 14 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | noel 3495 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 11 | 10 | iffalsei 3611 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 12 | 9, 11 | eqtr4di 2280 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 13 | noel 3495 | . . . . . . . 8 ⊢ ¬ 𝑗 ∈ ∅ | |
| 14 | 13 | olci 737 | . . . . . . 7 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
| 15 | df-dc 840 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
| 16 | 14, 15 | mpbir 146 | . . . . . 6 ⊢ DECID 𝑗 ∈ ∅ |
| 17 | 16 | rgenw 2585 | . . . . 5 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
| 18 | 17 | a1i 9 | . . . 4 ⊢ (⊤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
| 19 | 10 | pm2.21i 649 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 20 | 19 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 21 | 1, 2, 4, 12, 18, 20 | zsumdc 11903 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 22 | 21 | mptru 1404 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 23 | fclim 11813 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 24 | ffun 5476 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 25 | 23, 24 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 26 | 1z 9480 | . . . 4 ⊢ 1 ∈ ℤ | |
| 27 | serclim0 11824 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 28 | 26, 27 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 29 | funbrfv 5672 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 30 | 25, 28, 29 | mp2 16 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 31 | 22, 30 | eqtri 2250 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 ifcif 3602 {csn 3666 class class class wbr 4083 × cxp 4717 dom cdm 4719 Fun wfun 5312 ⟶wf 5314 ‘cfv 5318 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 ℕcn 9118 ℤcz 9454 ℤ≥cuz 9730 seqcseq 10677 ⇝ cli 11797 Σcsu 11872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 |
| This theorem is referenced by: isumz 11908 fsumf1o 11909 fsumcllem 11918 fsumadd 11925 fsum2d 11954 fisumrev2 11965 fsummulc2 11967 fsumconst 11973 modfsummod 11977 fsumabs 11984 telfsumo 11985 fsumparts 11989 fsumrelem 11990 fsumiun 11996 isumsplit 12010 arisum 12017 arisum2 12018 cvgratnnlemseq 12045 bitsinv1 12481 gsumfzfsumlem0 14558 fsumcncntop 15249 dvmptfsum 15407 |
| Copyright terms: Public domain | W3C validator |