| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sum0 | GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9697 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9412 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 3 | 0ss 3501 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 6 | 5, 1 | eleqtrdi 2299 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 7 | c0ex 8079 | . . . . . . 7 ⊢ 0 ∈ V | |
| 8 | 7 | fvconst2 5810 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 9 | 6, 8 | syl 14 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | noel 3466 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 11 | 10 | iffalsei 3582 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 12 | 9, 11 | eqtr4di 2257 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 13 | noel 3466 | . . . . . . . 8 ⊢ ¬ 𝑗 ∈ ∅ | |
| 14 | 13 | olci 734 | . . . . . . 7 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
| 15 | df-dc 837 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
| 16 | 14, 15 | mpbir 146 | . . . . . 6 ⊢ DECID 𝑗 ∈ ∅ |
| 17 | 16 | rgenw 2562 | . . . . 5 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
| 18 | 17 | a1i 9 | . . . 4 ⊢ (⊤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
| 19 | 10 | pm2.21i 647 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 20 | 19 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 21 | 1, 2, 4, 12, 18, 20 | zsumdc 11745 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 22 | 21 | mptru 1382 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 23 | fclim 11655 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 24 | ffun 5435 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 25 | 23, 24 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 26 | 1z 9411 | . . . 4 ⊢ 1 ∈ ℤ | |
| 27 | serclim0 11666 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 28 | 26, 27 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 29 | funbrfv 5627 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 30 | 25, 28, 29 | mp2 16 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 31 | 22, 30 | eqtri 2227 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3168 ∅c0 3462 ifcif 3573 {csn 3635 class class class wbr 4048 × cxp 4678 dom cdm 4680 Fun wfun 5271 ⟶wf 5273 ‘cfv 5277 ℂcc 7936 0cc0 7938 1c1 7939 + caddc 7941 ℕcn 9049 ℤcz 9385 ℤ≥cuz 9661 seqcseq 10605 ⇝ cli 11639 Σcsu 11714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-oadd 6516 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-seqfrec 10606 df-exp 10697 df-ihash 10934 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-sumdc 11715 |
| This theorem is referenced by: isumz 11750 fsumf1o 11751 fsumcllem 11760 fsumadd 11767 fsum2d 11796 fisumrev2 11807 fsummulc2 11809 fsumconst 11815 modfsummod 11819 fsumabs 11826 telfsumo 11827 fsumparts 11831 fsumrelem 11832 fsumiun 11838 isumsplit 11852 arisum 11859 arisum2 11860 cvgratnnlemseq 11887 bitsinv1 12323 gsumfzfsumlem0 14398 fsumcncntop 15089 dvmptfsum 15247 |
| Copyright terms: Public domain | W3C validator |