ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod0 GIF version

Theorem prod0 11731
Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
Assertion
Ref Expression
prod0 𝑘 ∈ ∅ 𝐴 = 1

Proof of Theorem prod0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1z 9346 . 2 1 ∈ ℤ
2 nnuz 9631 . . 3 ℕ = (ℤ‘1)
3 id 19 . . 3 (1 ∈ ℤ → 1 ∈ ℤ)
4 1ap0 8611 . . . 4 1 # 0
54a1i 9 . . 3 (1 ∈ ℤ → 1 # 0)
62prodfclim1 11690 . . 3 (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1)
7 noel 3451 . . . . . . 7 ¬ 𝑗 ∈ ∅
87olci 733 . . . . . 6 (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)
9 df-dc 836 . . . . . 6 (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅))
108, 9mpbir 146 . . . . 5 DECID 𝑗 ∈ ∅
1110rgenw 2549 . . . 4 𝑗 ∈ ℕ DECID 𝑗 ∈ ∅
1211a1i 9 . . 3 (1 ∈ ℤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅)
13 0ss 3486 . . . 4 ∅ ⊆ ℕ
1413a1i 9 . . 3 (1 ∈ ℤ → ∅ ⊆ ℕ)
15 fvconst2g 5773 . . . 4 ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1)
16 noel 3451 . . . . 5 ¬ 𝑘 ∈ ∅
1716iffalsei 3567 . . . 4 if(𝑘 ∈ ∅, 𝐴, 1) = 1
1815, 17eqtr4di 2244 . . 3 ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1))
1916pm2.21i 647 . . . 4 (𝑘 ∈ ∅ → 𝐴 ∈ ℂ)
2019adantl 277 . . 3 ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ)
212, 3, 5, 6, 12, 14, 18, 20zprodap0 11727 . 2 (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1)
221, 21ax-mp 5 1 𝑘 ∈ ∅ 𝐴 = 1
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wss 3154  c0 3447  ifcif 3558  {csn 3619   class class class wbr 4030   × cxp 4658  cfv 5255  cc 7872  0cc0 7874  1c1 7875   # cap 8602  cn 8984  cz 9320  cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697
This theorem is referenced by:  prod1dc  11732  fprodf1o  11734  fprodmul  11737  fprodcl2lem  11751  fprodcllem  11752  fprodfac  11761  fprodconst  11766  fprodap0  11767  fprod2d  11769  fprodrec  11775  fprodap0f  11782  fprodle  11786  fprodmodd  11787  gausslemma2dlem4  15221
  Copyright terms: Public domain W3C validator