![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prod0 | GIF version |
Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prod0 | ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9343 | . 2 ⊢ 1 ∈ ℤ | |
2 | nnuz 9628 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
3 | id 19 | . . 3 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
4 | 1ap0 8609 | . . . 4 ⊢ 1 # 0 | |
5 | 4 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → 1 # 0) |
6 | 2 | prodfclim1 11687 | . . 3 ⊢ (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1) |
7 | noel 3450 | . . . . . . 7 ⊢ ¬ 𝑗 ∈ ∅ | |
8 | 7 | olci 733 | . . . . . 6 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
9 | df-dc 836 | . . . . . 6 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
10 | 8, 9 | mpbir 146 | . . . . 5 ⊢ DECID 𝑗 ∈ ∅ |
11 | 10 | rgenw 2549 | . . . 4 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
12 | 11 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
13 | 0ss 3485 | . . . 4 ⊢ ∅ ⊆ ℕ | |
14 | 13 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∅ ⊆ ℕ) |
15 | fvconst2g 5772 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1) | |
16 | noel 3450 | . . . . 5 ⊢ ¬ 𝑘 ∈ ∅ | |
17 | 16 | iffalsei 3566 | . . . 4 ⊢ if(𝑘 ∈ ∅, 𝐴, 1) = 1 |
18 | 15, 17 | eqtr4di 2244 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1)) |
19 | 16 | pm2.21i 647 | . . . 4 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
20 | 19 | adantl 277 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
21 | 2, 3, 5, 6, 12, 14, 18, 20 | zprodap0 11724 | . 2 ⊢ (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1) |
22 | 1, 21 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ∅c0 3446 ifcif 3557 {csn 3618 class class class wbr 4029 × cxp 4657 ‘cfv 5254 ℂcc 7870 0cc0 7872 1c1 7873 # cap 8600 ℕcn 8982 ℤcz 9317 ∏cprod 11693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-proddc 11694 |
This theorem is referenced by: prod1dc 11729 fprodf1o 11731 fprodmul 11734 fprodcl2lem 11748 fprodcllem 11749 fprodfac 11758 fprodconst 11763 fprodap0 11764 fprod2d 11766 fprodrec 11772 fprodap0f 11779 fprodle 11783 fprodmodd 11784 gausslemma2dlem4 15180 |
Copyright terms: Public domain | W3C validator |