| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prod0 | GIF version | ||
| Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prod0 | ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9460 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | nnuz 9746 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | id 19 | . . 3 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
| 4 | 1ap0 8725 | . . . 4 ⊢ 1 # 0 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → 1 # 0) |
| 6 | 2 | prodfclim1 12041 | . . 3 ⊢ (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1) |
| 7 | noel 3495 | . . . . . . 7 ⊢ ¬ 𝑗 ∈ ∅ | |
| 8 | 7 | olci 737 | . . . . . 6 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
| 9 | df-dc 840 | . . . . . 6 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
| 10 | 8, 9 | mpbir 146 | . . . . 5 ⊢ DECID 𝑗 ∈ ∅ |
| 11 | 10 | rgenw 2585 | . . . 4 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
| 12 | 11 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
| 13 | 0ss 3530 | . . . 4 ⊢ ∅ ⊆ ℕ | |
| 14 | 13 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∅ ⊆ ℕ) |
| 15 | fvconst2g 5846 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1) | |
| 16 | noel 3495 | . . . . 5 ⊢ ¬ 𝑘 ∈ ∅ | |
| 17 | 16 | iffalsei 3611 | . . . 4 ⊢ if(𝑘 ∈ ∅, 𝐴, 1) = 1 |
| 18 | 15, 17 | eqtr4di 2280 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1)) |
| 19 | 16 | pm2.21i 649 | . . . 4 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 20 | 19 | adantl 277 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 21 | 2, 3, 5, 6, 12, 14, 18, 20 | zprodap0 12078 | . 2 ⊢ (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 ifcif 3602 {csn 3666 class class class wbr 4082 × cxp 4714 ‘cfv 5314 ℂcc 7985 0cc0 7987 1c1 7988 # cap 8716 ℕcn 9098 ℤcz 9434 ∏cprod 12047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-proddc 12048 |
| This theorem is referenced by: prod1dc 12083 fprodf1o 12085 fprodmul 12088 fprodcl2lem 12102 fprodcllem 12103 fprodfac 12112 fprodconst 12117 fprodap0 12118 fprod2d 12120 fprodrec 12126 fprodap0f 12133 fprodle 12137 fprodmodd 12138 gausslemma2dlem4 15728 |
| Copyright terms: Public domain | W3C validator |