| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prod0 | GIF version | ||
| Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prod0 | ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9413 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | nnuz 9699 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | id 19 | . . 3 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
| 4 | 1ap0 8678 | . . . 4 ⊢ 1 # 0 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → 1 # 0) |
| 6 | 2 | prodfclim1 11925 | . . 3 ⊢ (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1) |
| 7 | noel 3468 | . . . . . . 7 ⊢ ¬ 𝑗 ∈ ∅ | |
| 8 | 7 | olci 734 | . . . . . 6 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
| 9 | df-dc 837 | . . . . . 6 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
| 10 | 8, 9 | mpbir 146 | . . . . 5 ⊢ DECID 𝑗 ∈ ∅ |
| 11 | 10 | rgenw 2562 | . . . 4 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
| 12 | 11 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
| 13 | 0ss 3503 | . . . 4 ⊢ ∅ ⊆ ℕ | |
| 14 | 13 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∅ ⊆ ℕ) |
| 15 | fvconst2g 5810 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1) | |
| 16 | noel 3468 | . . . . 5 ⊢ ¬ 𝑘 ∈ ∅ | |
| 17 | 16 | iffalsei 3584 | . . . 4 ⊢ if(𝑘 ∈ ∅, 𝐴, 1) = 1 |
| 18 | 15, 17 | eqtr4di 2257 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1)) |
| 19 | 16 | pm2.21i 647 | . . . 4 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 20 | 19 | adantl 277 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 21 | 2, 3, 5, 6, 12, 14, 18, 20 | zprodap0 11962 | . 2 ⊢ (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ∅c0 3464 ifcif 3575 {csn 3637 class class class wbr 4050 × cxp 4680 ‘cfv 5279 ℂcc 7938 0cc0 7940 1c1 7941 # cap 8669 ℕcn 9051 ℤcz 9387 ∏cprod 11931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-oadd 6518 df-er 6632 df-en 6840 df-dom 6841 df-fin 6842 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-exp 10701 df-ihash 10938 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-proddc 11932 |
| This theorem is referenced by: prod1dc 11967 fprodf1o 11969 fprodmul 11972 fprodcl2lem 11986 fprodcllem 11987 fprodfac 11996 fprodconst 12001 fprodap0 12002 fprod2d 12004 fprodrec 12010 fprodap0f 12017 fprodle 12021 fprodmodd 12022 gausslemma2dlem4 15611 |
| Copyright terms: Public domain | W3C validator |