| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prod0 | GIF version | ||
| Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prod0 | ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9369 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | nnuz 9654 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | id 19 | . . 3 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
| 4 | 1ap0 8634 | . . . 4 ⊢ 1 # 0 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → 1 # 0) |
| 6 | 2 | prodfclim1 11726 | . . 3 ⊢ (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1) |
| 7 | noel 3455 | . . . . . . 7 ⊢ ¬ 𝑗 ∈ ∅ | |
| 8 | 7 | olci 733 | . . . . . 6 ⊢ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅) |
| 9 | df-dc 836 | . . . . . 6 ⊢ (DECID 𝑗 ∈ ∅ ↔ (𝑗 ∈ ∅ ∨ ¬ 𝑗 ∈ ∅)) | |
| 10 | 8, 9 | mpbir 146 | . . . . 5 ⊢ DECID 𝑗 ∈ ∅ |
| 11 | 10 | rgenw 2552 | . . . 4 ⊢ ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅ |
| 12 | 11 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∀𝑗 ∈ ℕ DECID 𝑗 ∈ ∅) |
| 13 | 0ss 3490 | . . . 4 ⊢ ∅ ⊆ ℕ | |
| 14 | 13 | a1i 9 | . . 3 ⊢ (1 ∈ ℤ → ∅ ⊆ ℕ) |
| 15 | fvconst2g 5779 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1) | |
| 16 | noel 3455 | . . . . 5 ⊢ ¬ 𝑘 ∈ ∅ | |
| 17 | 16 | iffalsei 3571 | . . . 4 ⊢ if(𝑘 ∈ ∅, 𝐴, 1) = 1 |
| 18 | 15, 17 | eqtr4di 2247 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1)) |
| 19 | 16 | pm2.21i 647 | . . . 4 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 20 | 19 | adantl 277 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 21 | 2, 3, 5, 6, 12, 14, 18, 20 | zprodap0 11763 | . 2 ⊢ (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∅c0 3451 ifcif 3562 {csn 3623 class class class wbr 4034 × cxp 4662 ‘cfv 5259 ℂcc 7894 0cc0 7896 1c1 7897 # cap 8625 ℕcn 9007 ℤcz 9343 ∏cprod 11732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 |
| This theorem is referenced by: prod1dc 11768 fprodf1o 11770 fprodmul 11773 fprodcl2lem 11787 fprodcllem 11788 fprodfac 11797 fprodconst 11802 fprodap0 11803 fprod2d 11805 fprodrec 11811 fprodap0f 11818 fprodle 11822 fprodmodd 11823 gausslemma2dlem4 15389 |
| Copyright terms: Public domain | W3C validator |