![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iffalsed | GIF version |
Description: Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iffalsed.1 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
iffalsed | ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsed.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | iffalse 3399 | . 2 ⊢ (¬ 𝜒 → if(𝜒, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1289 ifcif 3391 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-if 3392 |
This theorem is referenced by: eqifdc 3423 ifandc 3425 fimax2gtrilemstep 6606 updjudhcoinrg 6762 fzprval 9484 iseqf1olemnab 9905 iseqf1olemab 9906 iseqf1olemnanb 9907 iseqf1olemqk 9911 seq3f1olemqsumkj 9915 seq3f1olemqsumk 9916 seq3f1olemqsum 9917 fser0const 9939 expnnval 9946 expnegap0 9951 isumrblem 10752 isummolem3 10757 isumss 10770 isumss2 10772 fsumadd 10787 fsumsplit 10788 sumsplitdc 10813 fsummulc2 10829 cvgratz 10913 ef0lem 10937 gcdval 11216 eucalgf 11302 eucalginv 11303 eucalglt 11304 nnsf 11778 peano4nninf 11779 nninfalllemn 11781 nninfsellemsuc 11787 nninfsellemeq 11789 |
Copyright terms: Public domain | W3C validator |