ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indifcom GIF version

Theorem indifcom 3379
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
Assertion
Ref Expression
indifcom (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))

Proof of Theorem indifcom
StepHypRef Expression
1 incom 3325 . . 3 (𝐴𝐵) = (𝐵𝐴)
21difeq1i 3247 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐵𝐴) ∖ 𝐶)
3 indif2 3377 . 2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
4 indif2 3377 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
52, 3, 43eqtr4i 2206 1 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cdif 3124  cin 3126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-dif 3129  df-in 3133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator