![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indifcom | GIF version |
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
indifcom | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3342 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | difeq1i 3264 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐵 ∩ 𝐴) ∖ 𝐶) |
3 | indif2 3394 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
4 | indif2 3394 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4i 2220 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∖ cdif 3141 ∩ cin 3143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-dif 3146 df-in 3150 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |