ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indi GIF version

Theorem indi 3420
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
indi (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem indi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 andi 820 . . . 4 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴𝑥𝐶)))
2 elin 3356 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3 elin 3356 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
42, 3orbi12i 766 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴𝑥𝐶)))
51, 4bitr4i 187 . . 3 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐶)))
6 elun 3314 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76anbi2i 457 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
8 elun 3314 . . 3 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐶)))
95, 7, 83bitr4i 212 . 2 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐶)))
109ineqri 3366 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wcel 2176  cun 3164  cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172
This theorem is referenced by:  indir  3422  undisj2  3519  disjssun  3524  difdifdirss  3545  disjpr2  3697  diftpsn3  3774  resundi  4972  bitsinv1  12273
  Copyright terms: Public domain W3C validator