ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdifdirss GIF version

Theorem difdifdirss 3521
Description: Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
difdifdirss ((𝐴𝐵) ∖ 𝐶) ⊆ ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem difdifdirss
StepHypRef Expression
1 dif32 3412 . . . . 5 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
2 invdif 3391 . . . . 5 ((𝐴𝐶) ∩ (V ∖ 𝐵)) = ((𝐴𝐶) ∖ 𝐵)
31, 2eqtr4i 2212 . . . 4 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ (V ∖ 𝐵))
4 un0 3470 . . . 4 (((𝐴𝐶) ∩ (V ∖ 𝐵)) ∪ ∅) = ((𝐴𝐶) ∩ (V ∖ 𝐵))
53, 4eqtr4i 2212 . . 3 ((𝐴𝐵) ∖ 𝐶) = (((𝐴𝐶) ∩ (V ∖ 𝐵)) ∪ ∅)
6 indi 3396 . . . 4 ((𝐴𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) = (((𝐴𝐶) ∩ (V ∖ 𝐵)) ∪ ((𝐴𝐶) ∩ 𝐶))
7 disjdif 3509 . . . . . 6 (𝐶 ∩ (𝐴𝐶)) = ∅
8 incom 3341 . . . . . 6 (𝐶 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐶)
97, 8eqtr3i 2211 . . . . 5 ∅ = ((𝐴𝐶) ∩ 𝐶)
109uneq2i 3300 . . . 4 (((𝐴𝐶) ∩ (V ∖ 𝐵)) ∪ ∅) = (((𝐴𝐶) ∩ (V ∖ 𝐵)) ∪ ((𝐴𝐶) ∩ 𝐶))
116, 10eqtr4i 2212 . . 3 ((𝐴𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) = (((𝐴𝐶) ∩ (V ∖ 𝐵)) ∪ ∅)
125, 11eqtr4i 2212 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶))
13 ddifss 3387 . . . . . 6 𝐶 ⊆ (V ∖ (V ∖ 𝐶))
14 unss2 3320 . . . . . 6 (𝐶 ⊆ (V ∖ (V ∖ 𝐶)) → ((V ∖ 𝐵) ∪ 𝐶) ⊆ ((V ∖ 𝐵) ∪ (V ∖ (V ∖ 𝐶))))
1513, 14ax-mp 5 . . . . 5 ((V ∖ 𝐵) ∪ 𝐶) ⊆ ((V ∖ 𝐵) ∪ (V ∖ (V ∖ 𝐶)))
16 indmss 3408 . . . . . 6 ((V ∖ 𝐵) ∪ (V ∖ (V ∖ 𝐶))) ⊆ (V ∖ (𝐵 ∩ (V ∖ 𝐶)))
17 invdif 3391 . . . . . . 7 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
1817difeq2i 3264 . . . . . 6 (V ∖ (𝐵 ∩ (V ∖ 𝐶))) = (V ∖ (𝐵𝐶))
1916, 18sseqtri 3203 . . . . 5 ((V ∖ 𝐵) ∪ (V ∖ (V ∖ 𝐶))) ⊆ (V ∖ (𝐵𝐶))
2015, 19sstri 3178 . . . 4 ((V ∖ 𝐵) ∪ 𝐶) ⊆ (V ∖ (𝐵𝐶))
21 sslin 3375 . . . 4 (((V ∖ 𝐵) ∪ 𝐶) ⊆ (V ∖ (𝐵𝐶)) → ((𝐴𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) ⊆ ((𝐴𝐶) ∩ (V ∖ (𝐵𝐶))))
2220, 21ax-mp 5 . . 3 ((𝐴𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) ⊆ ((𝐴𝐶) ∩ (V ∖ (𝐵𝐶)))
23 invdif 3391 . . 3 ((𝐴𝐶) ∩ (V ∖ (𝐵𝐶))) = ((𝐴𝐶) ∖ (𝐵𝐶))
2422, 23sseqtri 3203 . 2 ((𝐴𝐶) ∩ ((V ∖ 𝐵) ∪ 𝐶)) ⊆ ((𝐴𝐶) ∖ (𝐵𝐶))
2512, 24eqsstri 3201 1 ((𝐴𝐵) ∖ 𝐶) ⊆ ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  Vcvv 2751  cdif 3140  cun 3141  cin 3142  wss 3143  c0 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rab 2476  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator