ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difun1 GIF version

Theorem difun1 3419
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
Assertion
Ref Expression
difun1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem difun1
StepHypRef Expression
1 inass 3369 . . . 4 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
2 invdif 3401 . . . 4 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶)
31, 2eqtr3i 2216 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶)
4 undm 3417 . . . . 5 (V ∖ (𝐵𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶))
54ineq2i 3357 . . . 4 (𝐴 ∩ (V ∖ (𝐵𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
6 invdif 3401 . . . 4 (𝐴 ∩ (V ∖ (𝐵𝐶))) = (𝐴 ∖ (𝐵𝐶))
75, 6eqtr3i 2216 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵𝐶))
83, 7eqtr3i 2216 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵𝐶))
9 invdif 3401 . . 3 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
109difeq1i 3273 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
118, 10eqtr3i 2216 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2760  cdif 3150  cun 3151  cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159
This theorem is referenced by:  dif32  3422  difabs  3423  difpr  3760  diffifi  6941  difinfinf  7150
  Copyright terms: Public domain W3C validator