ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difun1 GIF version

Theorem difun1 3304
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
Assertion
Ref Expression
difun1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem difun1
StepHypRef Expression
1 inass 3254 . . . 4 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
2 invdif 3286 . . . 4 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶)
31, 2eqtr3i 2138 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶)
4 undm 3302 . . . . 5 (V ∖ (𝐵𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶))
54ineq2i 3242 . . . 4 (𝐴 ∩ (V ∖ (𝐵𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
6 invdif 3286 . . . 4 (𝐴 ∩ (V ∖ (𝐵𝐶))) = (𝐴 ∖ (𝐵𝐶))
75, 6eqtr3i 2138 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵𝐶))
83, 7eqtr3i 2138 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵𝐶))
9 invdif 3286 . . 3 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
109difeq1i 3158 . 2 ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
118, 10eqtr3i 2138 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1314  Vcvv 2658  cdif 3036  cun 3037  cin 3038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045
This theorem is referenced by:  dif32  3307  difabs  3308  difpr  3630  diffifi  6754  difinfinf  6952
  Copyright terms: Public domain W3C validator