![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difun1 | GIF version |
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difun1 | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 3369 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
2 | invdif 3401 | . . . 4 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) | |
3 | 1, 2 | eqtr3i 2216 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) |
4 | undm 3417 | . . . . 5 ⊢ (V ∖ (𝐵 ∪ 𝐶)) = ((V ∖ 𝐵) ∩ (V ∖ 𝐶)) | |
5 | 4 | ineq2i 3357 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) |
6 | invdif 3401 | . . . 4 ⊢ (𝐴 ∩ (V ∖ (𝐵 ∪ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) | |
7 | 5, 6 | eqtr3i 2216 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
8 | 3, 7 | eqtr3i 2216 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = (𝐴 ∖ (𝐵 ∪ 𝐶)) |
9 | invdif 3401 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
10 | 9 | difeq1i 3273 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∖ 𝐶) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
11 | 8, 10 | eqtr3i 2216 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 Vcvv 2760 ∖ cdif 3150 ∪ cun 3151 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 |
This theorem is referenced by: dif32 3422 difabs 3423 difpr 3760 diffifi 6941 difinfinf 7150 |
Copyright terms: Public domain | W3C validator |