Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqi | GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 3814 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-uni 3806 |
This theorem is referenced by: elunirab 3818 unisn 3821 uniop 4249 unisuc 4407 unisucg 4408 univ 4470 dfiun3g 4877 op1sta 5102 op2nda 5105 dfdm2 5155 iotajust 5169 dfiota2 5171 cbviota 5175 sb8iota 5177 dffv4g 5504 funfvdm2f 5573 riotauni 5827 1st0 6135 2nd0 6136 unielxp 6165 brtpos0 6243 recsfval 6306 uniqs 6583 xpassen 6820 sup00 6992 suplocexprlemell 7687 uptx 13345 |
Copyright terms: Public domain | W3C validator |