| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqi | GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 3859 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 |
| This theorem is referenced by: elunirab 3863 unisn 3866 uniop 4301 unisuc 4461 unisucg 4462 univ 4524 dfiun3g 4936 op1sta 5165 op2nda 5168 dfdm2 5218 iotajust 5232 dfiota2 5234 cbviota 5238 sb8iota 5240 dffv4g 5575 funfvdm2f 5646 riotauni 5908 1st0 6232 2nd0 6233 unielxp 6262 brtpos0 6340 recsfval 6403 uniqs 6682 xpassen 6927 sup00 7107 suplocexprlemell 7828 uptx 14779 |
| Copyright terms: Public domain | W3C validator |