ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieqi GIF version

Theorem unieqi 3860
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unieqi.1 𝐴 = 𝐵
Assertion
Ref Expression
unieqi 𝐴 = 𝐵

Proof of Theorem unieqi
StepHypRef Expression
1 unieqi.1 . 2 𝐴 = 𝐵
2 unieq 3859 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2ax-mp 5 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373   cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-uni 3851
This theorem is referenced by:  elunirab  3863  unisn  3866  uniop  4300  unisuc  4460  unisucg  4461  univ  4523  dfiun3g  4935  op1sta  5164  op2nda  5167  dfdm2  5217  iotajust  5231  dfiota2  5233  cbviota  5237  sb8iota  5239  dffv4g  5573  funfvdm2f  5644  riotauni  5906  1st0  6230  2nd0  6231  unielxp  6260  brtpos0  6338  recsfval  6401  uniqs  6680  xpassen  6925  sup00  7105  suplocexprlemell  7826  uptx  14746
  Copyright terms: Public domain W3C validator