![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqi | GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 3844 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 |
This theorem is referenced by: elunirab 3848 unisn 3851 uniop 4284 unisuc 4444 unisucg 4445 univ 4507 dfiun3g 4919 op1sta 5147 op2nda 5150 dfdm2 5200 iotajust 5214 dfiota2 5216 cbviota 5220 sb8iota 5222 dffv4g 5551 funfvdm2f 5622 riotauni 5880 1st0 6197 2nd0 6198 unielxp 6227 brtpos0 6305 recsfval 6368 uniqs 6647 xpassen 6884 sup00 7062 suplocexprlemell 7773 uptx 14442 |
Copyright terms: Public domain | W3C validator |