| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqi | GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 3859 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 |
| This theorem is referenced by: elunirab 3863 unisn 3866 uniop 4300 unisuc 4460 unisucg 4461 univ 4523 dfiun3g 4935 op1sta 5164 op2nda 5167 dfdm2 5217 iotajust 5231 dfiota2 5233 cbviota 5237 sb8iota 5239 dffv4g 5573 funfvdm2f 5644 riotauni 5906 1st0 6230 2nd0 6231 unielxp 6260 brtpos0 6338 recsfval 6401 uniqs 6680 xpassen 6925 sup00 7105 suplocexprlemell 7826 uptx 14746 |
| Copyright terms: Public domain | W3C validator |