Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqi | GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 3777 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ∪ cuni 3768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-uni 3769 |
This theorem is referenced by: elunirab 3781 unisn 3784 uniop 4210 unisuc 4368 unisucg 4369 univ 4430 dfiun3g 4836 op1sta 5060 op2nda 5063 dfdm2 5113 iotajust 5127 dfiota2 5129 cbviota 5133 sb8iota 5135 dffv4g 5458 funfvdm2f 5526 riotauni 5776 1st0 6082 2nd0 6083 unielxp 6112 brtpos0 6189 recsfval 6252 uniqs 6527 xpassen 6764 sup00 6935 suplocexprlemell 7612 uptx 12613 |
Copyright terms: Public domain | W3C validator |