| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqi | GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 3849 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∪ cuni 3840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 |
| This theorem is referenced by: elunirab 3853 unisn 3856 uniop 4289 unisuc 4449 unisucg 4450 univ 4512 dfiun3g 4924 op1sta 5152 op2nda 5155 dfdm2 5205 iotajust 5219 dfiota2 5221 cbviota 5225 sb8iota 5227 dffv4g 5558 funfvdm2f 5629 riotauni 5887 1st0 6211 2nd0 6212 unielxp 6241 brtpos0 6319 recsfval 6382 uniqs 6661 xpassen 6898 sup00 7078 suplocexprlemell 7797 uptx 14594 |
| Copyright terms: Public domain | W3C validator |