| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqi | GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 3873 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cuni 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-uni 3865 |
| This theorem is referenced by: elunirab 3877 unisn 3880 uniop 4318 unisuc 4478 unisucg 4479 univ 4541 dfiun3g 4954 op1sta 5183 op2nda 5186 dfdm2 5236 iotajust 5250 dfiota2 5252 cbviota 5256 sb8iota 5258 dffv4g 5596 funfvdm2f 5667 riotauni 5929 1st0 6253 2nd0 6254 unielxp 6283 brtpos0 6361 recsfval 6424 uniqs 6703 xpassen 6950 sup00 7131 suplocexprlemell 7861 uptx 14861 |
| Copyright terms: Public domain | W3C validator |