| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqi | GIF version | ||
| Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unieqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | unieq 3897 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cuni 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 |
| This theorem is referenced by: elunirab 3901 unisn 3904 uniop 4342 unisuc 4504 unisucg 4505 univ 4567 dfiun3g 4981 op1sta 5210 op2nda 5213 dfdm2 5263 iotajust 5277 dfiota2 5279 cbviota 5283 cbviotavw 5284 sb8iota 5286 dffv4g 5624 funfvdm2f 5699 riotauni 5961 1st0 6290 2nd0 6291 unielxp 6320 brtpos0 6398 recsfval 6461 uniqs 6740 xpassen 6989 sup00 7170 suplocexprlemell 7900 uptx 14948 |
| Copyright terms: Public domain | W3C validator |