ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offres GIF version

Theorem offres 6187
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))

Proof of Theorem offres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3380 . . . . . 6 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ⊆ 𝐷
21sseli 3175 . . . . 5 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → 𝑥𝐷)
3 fvres 5578 . . . . . 6 (𝑥𝐷 → ((𝐹𝐷)‘𝑥) = (𝐹𝑥))
4 fvres 5578 . . . . . 6 (𝑥𝐷 → ((𝐺𝐷)‘𝑥) = (𝐺𝑥))
53, 4oveq12d 5936 . . . . 5 (𝑥𝐷 → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
62, 5syl 14 . . . 4 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
76mpteq2ia 4115 . . 3 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
8 inindi 3376 . . . . 5 (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
9 incom 3351 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) = (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺))
10 dmres 4963 . . . . . 6 dom (𝐹𝐷) = (𝐷 ∩ dom 𝐹)
11 dmres 4963 . . . . . 6 dom (𝐺𝐷) = (𝐷 ∩ dom 𝐺)
1210, 11ineq12i 3358 . . . . 5 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
138, 9, 123eqtr4ri 2225 . . . 4 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷)
14 eqid 2193 . . . 4 (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))
1513, 14mpteq12i 4117 . . 3 (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
16 resmpt3 4991 . . 3 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
177, 15, 163eqtr4ri 2225 . 2 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
18 offval3 6186 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1918reseq1d 4941 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷))
20 resexg 4982 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
21 resexg 4982 . . 3 (𝐺𝑊 → (𝐺𝐷) ∈ V)
22 offval3 6186 . . 3 (((𝐹𝐷) ∈ V ∧ (𝐺𝐷) ∈ V) → ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2320, 21, 22syl2an 289 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2417, 19, 233eqtr4a 2252 1 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cin 3152  cmpt 4090  dom cdm 4659  cres 4661  cfv 5254  (class class class)co 5918  𝑓 cof 6128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator