ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offres GIF version

Theorem offres 6041
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))

Proof of Theorem offres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3302 . . . . . 6 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ⊆ 𝐷
21sseli 3098 . . . . 5 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → 𝑥𝐷)
3 fvres 5453 . . . . . 6 (𝑥𝐷 → ((𝐹𝐷)‘𝑥) = (𝐹𝑥))
4 fvres 5453 . . . . . 6 (𝑥𝐷 → ((𝐺𝐷)‘𝑥) = (𝐺𝑥))
53, 4oveq12d 5800 . . . . 5 (𝑥𝐷 → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
62, 5syl 14 . . . 4 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
76mpteq2ia 4022 . . 3 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
8 inindi 3298 . . . . 5 (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
9 incom 3273 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) = (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺))
10 dmres 4848 . . . . . 6 dom (𝐹𝐷) = (𝐷 ∩ dom 𝐹)
11 dmres 4848 . . . . . 6 dom (𝐺𝐷) = (𝐷 ∩ dom 𝐺)
1210, 11ineq12i 3280 . . . . 5 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
138, 9, 123eqtr4ri 2172 . . . 4 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷)
14 eqid 2140 . . . 4 (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))
1513, 14mpteq12i 4024 . . 3 (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
16 resmpt3 4876 . . 3 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
177, 15, 163eqtr4ri 2172 . 2 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
18 offval3 6040 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1918reseq1d 4826 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷))
20 resexg 4867 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
21 resexg 4867 . . 3 (𝐺𝑊 → (𝐺𝐷) ∈ V)
22 offval3 6040 . . 3 (((𝐹𝐷) ∈ V ∧ (𝐺𝐷) ∈ V) → ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2320, 21, 22syl2an 287 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2417, 19, 233eqtr4a 2199 1 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  Vcvv 2689  cin 3075  cmpt 3997  dom cdm 4547  cres 4549  cfv 5131  (class class class)co 5782  𝑓 cof 5988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator