ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offres GIF version

Theorem offres 6220
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))

Proof of Theorem offres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3394 . . . . . 6 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ⊆ 𝐷
21sseli 3189 . . . . 5 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → 𝑥𝐷)
3 fvres 5600 . . . . . 6 (𝑥𝐷 → ((𝐹𝐷)‘𝑥) = (𝐹𝑥))
4 fvres 5600 . . . . . 6 (𝑥𝐷 → ((𝐺𝐷)‘𝑥) = (𝐺𝑥))
53, 4oveq12d 5962 . . . . 5 (𝑥𝐷 → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
62, 5syl 14 . . . 4 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) → (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
76mpteq2ia 4130 . . 3 (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
8 inindi 3390 . . . . 5 (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
9 incom 3365 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) = (𝐷 ∩ (dom 𝐹 ∩ dom 𝐺))
10 dmres 4980 . . . . . 6 dom (𝐹𝐷) = (𝐷 ∩ dom 𝐹)
11 dmres 4980 . . . . . 6 dom (𝐺𝐷) = (𝐷 ∩ dom 𝐺)
1210, 11ineq12i 3372 . . . . 5 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((𝐷 ∩ dom 𝐹) ∩ (𝐷 ∩ dom 𝐺))
138, 9, 123eqtr4ri 2237 . . . 4 (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) = ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷)
14 eqid 2205 . . . 4 (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)) = (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))
1513, 14mpteq12i 4132 . . 3 (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
16 resmpt3 5008 . . 3 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ ((dom 𝐹 ∩ dom 𝐺) ∩ 𝐷) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
177, 15, 163eqtr4ri 2237 . 2 ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥)))
18 offval3 6219 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1918reseq1d 4958 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ↾ 𝐷))
20 resexg 4999 . . 3 (𝐹𝑉 → (𝐹𝐷) ∈ V)
21 resexg 4999 . . 3 (𝐺𝑊 → (𝐺𝐷) ∈ V)
22 offval3 6219 . . 3 (((𝐹𝐷) ∈ V ∧ (𝐺𝐷) ∈ V) → ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2320, 21, 22syl2an 289 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)) = (𝑥 ∈ (dom (𝐹𝐷) ∩ dom (𝐺𝐷)) ↦ (((𝐹𝐷)‘𝑥)𝑅((𝐺𝐷)‘𝑥))))
2417, 19, 233eqtr4a 2264 1 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  cmpt 4105  dom cdm 4675  cres 4677  cfv 5271  (class class class)co 5944  𝑓 cof 6156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator