| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| mpteq2i.1 | ⊢ 𝐵 = 𝐶 | 
| Ref | Expression | 
|---|---|
| mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | 
| 3 | 2 | mpteq2ia 4119 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 ↦ cmpt 4094 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4095 df-mpt 4096 | 
| This theorem is referenced by: frecsuc 6465 fodjuomni 7215 fodjumkv 7226 axcaucvg 7967 0tonninf 10532 1tonninf 10533 cbvsum 11525 cbvprod 11723 eirraplem 11942 znzrh2 14202 cnmpt12f 14522 fsumcncntop 14803 dvmptfsum 14961 dvef 14963 plyco 14995 plycj 14997 nninfsellemqall 15659 nninfomni 15663 exmidsbthr 15667 | 
| Copyright terms: Public domain | W3C validator |