![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
3 | 2 | mpteq2ia 4115 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ↦ cmpt 4090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-opab 4091 df-mpt 4092 |
This theorem is referenced by: frecsuc 6460 fodjuomni 7208 fodjumkv 7219 axcaucvg 7960 0tonninf 10511 1tonninf 10512 cbvsum 11503 cbvprod 11701 eirraplem 11920 znzrh2 14134 cnmpt12f 14454 fsumcncntop 14724 dvef 14873 nninfsellemqall 15505 nninfomni 15509 exmidsbthr 15513 |
Copyright terms: Public domain | W3C validator |