Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
3 | 2 | mpteq2ia 4068 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ↦ cmpt 4043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-opab 4044 df-mpt 4045 |
This theorem is referenced by: frecsuc 6375 fodjuomni 7113 fodjumkv 7124 axcaucvg 7841 0tonninf 10374 1tonninf 10375 cbvsum 11301 cbvprod 11499 eirraplem 11717 cnmpt12f 12926 fsumcncntop 13196 dvef 13328 nninfsellemqall 13895 nninfomni 13899 exmidsbthr 13902 |
Copyright terms: Public domain | W3C validator |