| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2ia 4120 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: frecsuc 6474 fodjuomni 7224 fodjumkv 7235 axcaucvg 7984 0tonninf 10549 1tonninf 10550 cbvsum 11542 cbvprod 11740 eirraplem 11959 znzrh2 14278 cnmpt12f 14606 fsumcncntop 14887 dvmptfsum 15045 dvef 15047 plyco 15079 plycj 15081 nninfsellemqall 15746 nninfomni 15750 exmidsbthr 15754 |
| Copyright terms: Public domain | W3C validator |