ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i GIF version

Theorem mpteq2i 4139
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
mpteq2i (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3 𝐵 = 𝐶
21a1i 9 . 2 (𝑥𝐴𝐵 = 𝐶)
32mpteq2ia 4138 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  cmpt 4113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-opab 4114  df-mpt 4115
This theorem is referenced by:  frecsuc  6506  fodjuomni  7266  fodjumkv  7277  axcaucvg  8033  0tonninf  10607  1tonninf  10608  cbvsum  11746  cbvprod  11944  eirraplem  12163  znzrh2  14483  cnmpt12f  14833  fsumcncntop  15114  dvmptfsum  15272  dvef  15274  plyco  15306  plycj  15308  nninfsellemqall  16093  nninfomni  16097  nnnninfex  16100  exmidsbthr  16103
  Copyright terms: Public domain W3C validator