ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i GIF version

Theorem mpteq2i 4170
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
mpteq2i (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3 𝐵 = 𝐶
21a1i 9 . 2 (𝑥𝐴𝐵 = 𝐶)
32mpteq2ia 4169 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  cmpt 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-opab 4145  df-mpt 4146
This theorem is referenced by:  frecsuc  6551  fodjuomni  7312  fodjumkv  7323  axcaucvg  8083  0tonninf  10657  1tonninf  10658  cbvsum  11866  cbvprod  12064  eirraplem  12283  znzrh2  14604  cnmpt12f  14954  fsumcncntop  15235  dvmptfsum  15393  dvef  15395  plyco  15427  plycj  15429  nninfsellemqall  16340  nninfomni  16344  nnnninfex  16347  exmidsbthr  16350
  Copyright terms: Public domain W3C validator