Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
3 | 2 | mpteq2ia 4075 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ↦ cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: frecsuc 6386 fodjuomni 7125 fodjumkv 7136 axcaucvg 7862 0tonninf 10395 1tonninf 10396 cbvsum 11323 cbvprod 11521 eirraplem 11739 cnmpt12f 13080 fsumcncntop 13350 dvef 13482 nninfsellemqall 14048 nninfomni 14052 exmidsbthr 14055 |
Copyright terms: Public domain | W3C validator |