Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i GIF version

Theorem mpteq2i 4015
 Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
mpteq2i (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3 𝐵 = 𝐶
21a1i 9 . 2 (𝑥𝐴𝐵 = 𝐶)
32mpteq2ia 4014 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 Colors of variables: wff set class Syntax hints:   = wceq 1331   ∈ wcel 1480   ↦ cmpt 3989 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-ral 2421  df-opab 3990  df-mpt 3991 This theorem is referenced by:  frecsuc  6304  fodjuomni  7021  fodjumkv  7034  axcaucvg  7715  0tonninf  10219  1tonninf  10220  cbvsum  11136  cbvprod  11334  eirraplem  11490  cnmpt12f  12465  fsumcncntop  12735  dvef  12866  nninfsellemqall  13241  nninfomni  13245  exmidsbthr  13248
 Copyright terms: Public domain W3C validator