| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2ia 4169 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: frecsuc 6551 fodjuomni 7312 fodjumkv 7323 axcaucvg 8083 0tonninf 10657 1tonninf 10658 cbvsum 11866 cbvprod 12064 eirraplem 12283 znzrh2 14604 cnmpt12f 14954 fsumcncntop 15235 dvmptfsum 15393 dvef 15395 plyco 15427 plycj 15429 nninfsellemqall 16340 nninfomni 16344 nnnninfex 16347 exmidsbthr 16350 |
| Copyright terms: Public domain | W3C validator |