| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2ia 4129 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ↦ cmpt 4104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: frecsuc 6483 fodjuomni 7233 fodjumkv 7244 axcaucvg 7995 0tonninf 10566 1tonninf 10567 cbvsum 11590 cbvprod 11788 eirraplem 12007 znzrh2 14326 cnmpt12f 14676 fsumcncntop 14957 dvmptfsum 15115 dvef 15117 plyco 15149 plycj 15151 nninfsellemqall 15816 nninfomni 15820 nnnninfex 15823 exmidsbthr 15826 |
| Copyright terms: Public domain | W3C validator |