ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2i GIF version

Theorem mpteq2i 4076
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
mpteq2i (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2i
StepHypRef Expression
1 mpteq2i.1 . . 3 𝐵 = 𝐶
21a1i 9 . 2 (𝑥𝐴𝐵 = 𝐶)
32mpteq2ia 4075 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4051  df-mpt 4052
This theorem is referenced by:  frecsuc  6386  fodjuomni  7125  fodjumkv  7136  axcaucvg  7862  0tonninf  10395  1tonninf  10396  cbvsum  11323  cbvprod  11521  eirraplem  11739  cnmpt12f  13080  fsumcncntop  13350  dvef  13482  nninfsellemqall  14048  nninfomni  14052  exmidsbthr  14055
  Copyright terms: Public domain W3C validator