| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2i | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| mpteq2i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq2i.1 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| 3 | 2 | mpteq2ia 4138 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ↦ cmpt 4113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-opab 4114 df-mpt 4115 |
| This theorem is referenced by: frecsuc 6506 fodjuomni 7266 fodjumkv 7277 axcaucvg 8033 0tonninf 10607 1tonninf 10608 cbvsum 11746 cbvprod 11944 eirraplem 12163 znzrh2 14483 cnmpt12f 14833 fsumcncntop 15114 dvmptfsum 15272 dvef 15274 plyco 15306 plycj 15308 nninfsellemqall 16093 nninfomni 16097 nnnninfex 16100 exmidsbthr 16103 |
| Copyright terms: Public domain | W3C validator |