ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2i GIF version

Theorem binom2i 10059
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
binom2i ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))

Proof of Theorem binom2i
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2addcli 7490 . . . 4 (𝐴 + 𝐵) ∈ ℂ
43, 1, 2adddii 7496 . . 3 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵))
51, 2, 1adddiri 7497 . . . . . 6 ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐵 · 𝐴))
62, 1mulcomi 7492 . . . . . . 7 (𝐵 · 𝐴) = (𝐴 · 𝐵)
76oveq2i 5663 . . . . . 6 ((𝐴 · 𝐴) + (𝐵 · 𝐴)) = ((𝐴 · 𝐴) + (𝐴 · 𝐵))
85, 7eqtri 2108 . . . . 5 ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐴 · 𝐵))
91, 2, 2adddiri 7497 . . . . 5 ((𝐴 + 𝐵) · 𝐵) = ((𝐴 · 𝐵) + (𝐵 · 𝐵))
108, 9oveq12i 5664 . . . 4 (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵)))
111, 1mulcli 7491 . . . . . 6 (𝐴 · 𝐴) ∈ ℂ
121, 2mulcli 7491 . . . . . 6 (𝐴 · 𝐵) ∈ ℂ
1311, 12addcli 7490 . . . . 5 ((𝐴 · 𝐴) + (𝐴 · 𝐵)) ∈ ℂ
142, 2mulcli 7491 . . . . 5 (𝐵 · 𝐵) ∈ ℂ
1513, 12, 14addassi 7494 . . . 4 ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵)))
1611, 12, 12addassi 7494 . . . . 5 (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵)))
1716oveq1i 5662 . . . 4 ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
1810, 15, 173eqtr2i 2114 . . 3 (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
194, 18eqtri 2108 . 2 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
203sqvali 10030 . 2 ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵))
211sqvali 10030 . . . 4 (𝐴↑2) = (𝐴 · 𝐴)
22122timesi 8544 . . . 4 (2 · (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 · 𝐵))
2321, 22oveq12i 5664 . . 3 ((𝐴↑2) + (2 · (𝐴 · 𝐵))) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵)))
242sqvali 10030 . . 3 (𝐵↑2) = (𝐵 · 𝐵)
2523, 24oveq12i 5664 . 2 (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
2619, 20, 253eqtr4i 2118 1 ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))
Colors of variables: wff set class
Syntax hints:   = wceq 1289  wcel 1438  (class class class)co 5652  cc 7346   + caddc 7351   · cmul 7353  2c2 8471  cexp 9950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-n0 8672  df-z 8749  df-uz 9018  df-iseq 9849  df-seq3 9850  df-exp 9951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator