![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > binom2i | GIF version |
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
binom2i | ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | addcli 8025 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
4 | 3, 1, 2 | adddii 8031 | . . 3 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) |
5 | 1, 2, 1 | adddiri 8032 | . . . . . 6 ⊢ ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐵 · 𝐴)) |
6 | 2, 1 | mulcomi 8027 | . . . . . . 7 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
7 | 6 | oveq2i 5930 | . . . . . 6 ⊢ ((𝐴 · 𝐴) + (𝐵 · 𝐴)) = ((𝐴 · 𝐴) + (𝐴 · 𝐵)) |
8 | 5, 7 | eqtri 2214 | . . . . 5 ⊢ ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐴 · 𝐵)) |
9 | 1, 2, 2 | adddiri 8032 | . . . . 5 ⊢ ((𝐴 + 𝐵) · 𝐵) = ((𝐴 · 𝐵) + (𝐵 · 𝐵)) |
10 | 8, 9 | oveq12i 5931 | . . . 4 ⊢ (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵))) |
11 | 1, 1 | mulcli 8026 | . . . . . 6 ⊢ (𝐴 · 𝐴) ∈ ℂ |
12 | 1, 2 | mulcli 8026 | . . . . . 6 ⊢ (𝐴 · 𝐵) ∈ ℂ |
13 | 11, 12 | addcli 8025 | . . . . 5 ⊢ ((𝐴 · 𝐴) + (𝐴 · 𝐵)) ∈ ℂ |
14 | 2, 2 | mulcli 8026 | . . . . 5 ⊢ (𝐵 · 𝐵) ∈ ℂ |
15 | 13, 12, 14 | addassi 8029 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵))) |
16 | 11, 12, 12 | addassi 8029 | . . . . 5 ⊢ (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) |
17 | 16 | oveq1i 5929 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
18 | 10, 15, 17 | 3eqtr2i 2220 | . . 3 ⊢ (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
19 | 4, 18 | eqtri 2214 | . 2 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
20 | 3 | sqvali 10693 | . 2 ⊢ ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵)) |
21 | 1 | sqvali 10693 | . . . 4 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
22 | 12 | 2timesi 9114 | . . . 4 ⊢ (2 · (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 · 𝐵)) |
23 | 21, 22 | oveq12i 5931 | . . 3 ⊢ ((𝐴↑2) + (2 · (𝐴 · 𝐵))) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) |
24 | 2 | sqvali 10693 | . . 3 ⊢ (𝐵↑2) = (𝐵 · 𝐵) |
25 | 23, 24 | oveq12i 5931 | . 2 ⊢ (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
26 | 19, 20, 25 | 3eqtr4i 2224 | 1 ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 · cmul 7879 2c2 9035 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: 2lgsoddprmlem3d 15267 |
Copyright terms: Public domain | W3C validator |