![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > binom2i | GIF version |
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
binom2i | ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | addcli 8023 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
4 | 3, 1, 2 | adddii 8029 | . . 3 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) |
5 | 1, 2, 1 | adddiri 8030 | . . . . . 6 ⊢ ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐵 · 𝐴)) |
6 | 2, 1 | mulcomi 8025 | . . . . . . 7 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
7 | 6 | oveq2i 5929 | . . . . . 6 ⊢ ((𝐴 · 𝐴) + (𝐵 · 𝐴)) = ((𝐴 · 𝐴) + (𝐴 · 𝐵)) |
8 | 5, 7 | eqtri 2214 | . . . . 5 ⊢ ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐴 · 𝐵)) |
9 | 1, 2, 2 | adddiri 8030 | . . . . 5 ⊢ ((𝐴 + 𝐵) · 𝐵) = ((𝐴 · 𝐵) + (𝐵 · 𝐵)) |
10 | 8, 9 | oveq12i 5930 | . . . 4 ⊢ (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵))) |
11 | 1, 1 | mulcli 8024 | . . . . . 6 ⊢ (𝐴 · 𝐴) ∈ ℂ |
12 | 1, 2 | mulcli 8024 | . . . . . 6 ⊢ (𝐴 · 𝐵) ∈ ℂ |
13 | 11, 12 | addcli 8023 | . . . . 5 ⊢ ((𝐴 · 𝐴) + (𝐴 · 𝐵)) ∈ ℂ |
14 | 2, 2 | mulcli 8024 | . . . . 5 ⊢ (𝐵 · 𝐵) ∈ ℂ |
15 | 13, 12, 14 | addassi 8027 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵))) |
16 | 11, 12, 12 | addassi 8027 | . . . . 5 ⊢ (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) |
17 | 16 | oveq1i 5928 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
18 | 10, 15, 17 | 3eqtr2i 2220 | . . 3 ⊢ (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
19 | 4, 18 | eqtri 2214 | . 2 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
20 | 3 | sqvali 10690 | . 2 ⊢ ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵)) |
21 | 1 | sqvali 10690 | . . . 4 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
22 | 12 | 2timesi 9112 | . . . 4 ⊢ (2 · (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 · 𝐵)) |
23 | 21, 22 | oveq12i 5930 | . . 3 ⊢ ((𝐴↑2) + (2 · (𝐴 · 𝐵))) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) |
24 | 2 | sqvali 10690 | . . 3 ⊢ (𝐵↑2) = (𝐵 · 𝐵) |
25 | 23, 24 | oveq12i 5930 | . 2 ⊢ (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵)) |
26 | 19, 20, 25 | 3eqtr4i 2224 | 1 ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 · cmul 7877 2c2 9033 ↑cexp 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 df-exp 10610 |
This theorem is referenced by: 2lgsoddprmlem3d 15198 |
Copyright terms: Public domain | W3C validator |