ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2i GIF version

Theorem binom2i 10194
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
binom2i ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))

Proof of Theorem binom2i
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2addcli 7589 . . . 4 (𝐴 + 𝐵) ∈ ℂ
43, 1, 2adddii 7595 . . 3 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵))
51, 2, 1adddiri 7596 . . . . . 6 ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐵 · 𝐴))
62, 1mulcomi 7591 . . . . . . 7 (𝐵 · 𝐴) = (𝐴 · 𝐵)
76oveq2i 5701 . . . . . 6 ((𝐴 · 𝐴) + (𝐵 · 𝐴)) = ((𝐴 · 𝐴) + (𝐴 · 𝐵))
85, 7eqtri 2115 . . . . 5 ((𝐴 + 𝐵) · 𝐴) = ((𝐴 · 𝐴) + (𝐴 · 𝐵))
91, 2, 2adddiri 7596 . . . . 5 ((𝐴 + 𝐵) · 𝐵) = ((𝐴 · 𝐵) + (𝐵 · 𝐵))
108, 9oveq12i 5702 . . . 4 (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵)))
111, 1mulcli 7590 . . . . . 6 (𝐴 · 𝐴) ∈ ℂ
121, 2mulcli 7590 . . . . . 6 (𝐴 · 𝐵) ∈ ℂ
1311, 12addcli 7589 . . . . 5 ((𝐴 · 𝐴) + (𝐴 · 𝐵)) ∈ ℂ
142, 2mulcli 7590 . . . . 5 (𝐵 · 𝐵) ∈ ℂ
1513, 12, 14addassi 7593 . . . 4 ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + ((𝐴 · 𝐵) + (𝐵 · 𝐵)))
1611, 12, 12addassi 7593 . . . . 5 (((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵)))
1716oveq1i 5700 . . . 4 ((((𝐴 · 𝐴) + (𝐴 · 𝐵)) + (𝐴 · 𝐵)) + (𝐵 · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
1810, 15, 173eqtr2i 2121 . . 3 (((𝐴 + 𝐵) · 𝐴) + ((𝐴 + 𝐵) · 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
194, 18eqtri 2115 . 2 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
203sqvali 10165 . 2 ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵))
211sqvali 10165 . . . 4 (𝐴↑2) = (𝐴 · 𝐴)
22122timesi 8644 . . . 4 (2 · (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 · 𝐵))
2321, 22oveq12i 5702 . . 3 ((𝐴↑2) + (2 · (𝐴 · 𝐵))) = ((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵)))
242sqvali 10165 . . 3 (𝐵↑2) = (𝐵 · 𝐵)
2523, 24oveq12i 5702 . 2 (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) = (((𝐴 · 𝐴) + ((𝐴 · 𝐵) + (𝐴 · 𝐵))) + (𝐵 · 𝐵))
2619, 20, 253eqtr4i 2125 1 ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))
Colors of variables: wff set class
Syntax hints:   = wceq 1296  wcel 1445  (class class class)co 5690  cc 7445   + caddc 7450   · cmul 7452  2c2 8571  cexp 10085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849  df-uz 9119  df-iseq 10002  df-seq3 10003  df-exp 10086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator