Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numma2c | GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numma2c.8 | ⊢ 𝑃 ∈ ℕ0 |
numma2c.9 | ⊢ 𝐹 ∈ ℕ0 |
numma2c.10 | ⊢ 𝐺 ∈ ℕ0 |
numma2c.11 | ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 |
numma2c.12 | ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
Ref | Expression |
---|---|
numma2c | ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma2c.8 | . . . . 5 ⊢ 𝑃 ∈ ℕ0 | |
2 | 1 | nn0cni 9102 | . . . 4 ⊢ 𝑃 ∈ ℂ |
3 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
4 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
5 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
6 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
7 | 4, 5, 6 | numcl 9307 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
8 | 3, 7 | eqeltri 2230 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
9 | 8 | nn0cni 9102 | . . . 4 ⊢ 𝑀 ∈ ℂ |
10 | 2, 9 | mulcomi 7884 | . . 3 ⊢ (𝑃 · 𝑀) = (𝑀 · 𝑃) |
11 | 10 | oveq1i 5834 | . 2 ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑀 · 𝑃) + 𝑁) |
12 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
13 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
14 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
15 | numma2c.9 | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
16 | numma2c.10 | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
17 | 5 | nn0cni 9102 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
18 | 17, 2 | mulcomi 7884 | . . . . 5 ⊢ (𝐴 · 𝑃) = (𝑃 · 𝐴) |
19 | 18 | oveq1i 5834 | . . . 4 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = ((𝑃 · 𝐴) + (𝐶 + 𝐺)) |
20 | numma2c.11 | . . . 4 ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 | |
21 | 19, 20 | eqtri 2178 | . . 3 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
22 | 6 | nn0cni 9102 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
23 | 22, 2 | mulcomi 7884 | . . . . 5 ⊢ (𝐵 · 𝑃) = (𝑃 · 𝐵) |
24 | 23 | oveq1i 5834 | . . . 4 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑃 · 𝐵) + 𝐷) |
25 | numma2c.12 | . . . 4 ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
26 | 24, 25 | eqtri 2178 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
27 | 4, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26 | nummac 9339 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
28 | 11, 27 | eqtri 2178 | 1 ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 (class class class)co 5824 + caddc 7735 · cmul 7737 ℕ0cn0 9090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-iota 5135 df-fun 5172 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-sub 8048 df-inn 8834 df-n0 9091 |
This theorem is referenced by: decma2c 9347 |
Copyright terms: Public domain | W3C validator |