| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numma2c | GIF version | ||
| Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numma.1 | ⊢ 𝑇 ∈ ℕ0 |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 |
| numma.3 | ⊢ 𝐵 ∈ ℕ0 |
| numma.4 | ⊢ 𝐶 ∈ ℕ0 |
| numma.5 | ⊢ 𝐷 ∈ ℕ0 |
| numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
| numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
| numma2c.8 | ⊢ 𝑃 ∈ ℕ0 |
| numma2c.9 | ⊢ 𝐹 ∈ ℕ0 |
| numma2c.10 | ⊢ 𝐺 ∈ ℕ0 |
| numma2c.11 | ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 |
| numma2c.12 | ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
| Ref | Expression |
|---|---|
| numma2c | ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma2c.8 | . . . . 5 ⊢ 𝑃 ∈ ℕ0 | |
| 2 | 1 | nn0cni 9389 | . . . 4 ⊢ 𝑃 ∈ ℂ |
| 3 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
| 4 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
| 5 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 6 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 7 | 4, 5, 6 | numcl 9598 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
| 8 | 3, 7 | eqeltri 2302 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
| 9 | 8 | nn0cni 9389 | . . . 4 ⊢ 𝑀 ∈ ℂ |
| 10 | 2, 9 | mulcomi 8160 | . . 3 ⊢ (𝑃 · 𝑀) = (𝑀 · 𝑃) |
| 11 | 10 | oveq1i 6017 | . 2 ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑀 · 𝑃) + 𝑁) |
| 12 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 14 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
| 15 | numma2c.9 | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
| 16 | numma2c.10 | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
| 17 | 5 | nn0cni 9389 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 18 | 17, 2 | mulcomi 8160 | . . . . 5 ⊢ (𝐴 · 𝑃) = (𝑃 · 𝐴) |
| 19 | 18 | oveq1i 6017 | . . . 4 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = ((𝑃 · 𝐴) + (𝐶 + 𝐺)) |
| 20 | numma2c.11 | . . . 4 ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 | |
| 21 | 19, 20 | eqtri 2250 | . . 3 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
| 22 | 6 | nn0cni 9389 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 23 | 22, 2 | mulcomi 8160 | . . . . 5 ⊢ (𝐵 · 𝑃) = (𝑃 · 𝐵) |
| 24 | 23 | oveq1i 6017 | . . . 4 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑃 · 𝐵) + 𝐷) |
| 25 | numma2c.12 | . . . 4 ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
| 26 | 24, 25 | eqtri 2250 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
| 27 | 4, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26 | nummac 9630 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| 28 | 11, 27 | eqtri 2250 | 1 ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 + caddc 8010 · cmul 8012 ℕ0cn0 9377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-n0 9378 |
| This theorem is referenced by: decma2c 9638 |
| Copyright terms: Public domain | W3C validator |