Proof of Theorem tanval2ap
Step | Hyp | Ref
| Expression |
1 | | tanvalap 11671 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
((sin‘𝐴) /
(cos‘𝐴))) |
2 | | 2cn 8949 |
. . . . . . 7
⊢ 2 ∈
ℂ |
3 | | ax-icn 7869 |
. . . . . . 7
⊢ i ∈
ℂ |
4 | 2, 3 | mulcomi 7926 |
. . . . . 6
⊢ (2
· i) = (i · 2) |
5 | 4 | oveq2i 5864 |
. . . . 5
⊢
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i ·
2)) |
6 | | sinval 11665 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
7 | 6 | adantr 274 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
8 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
𝐴 ∈
ℂ) |
9 | | mulcl 7901 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
10 | 3, 8, 9 | sylancr 412 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(i · 𝐴) ∈
ℂ) |
11 | | efcl 11627 |
. . . . . . . 8
⊢ ((i
· 𝐴) ∈ ℂ
→ (exp‘(i · 𝐴)) ∈ ℂ) |
12 | 10, 11 | syl 14 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(exp‘(i · 𝐴))
∈ ℂ) |
13 | | negicn 8120 |
. . . . . . . . 9
⊢ -i ∈
ℂ |
14 | | mulcl 7901 |
. . . . . . . . 9
⊢ ((-i
∈ ℂ ∧ 𝐴
∈ ℂ) → (-i · 𝐴) ∈ ℂ) |
15 | 13, 8, 14 | sylancr 412 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(-i · 𝐴) ∈
ℂ) |
16 | | efcl 11627 |
. . . . . . . 8
⊢ ((-i
· 𝐴) ∈ ℂ
→ (exp‘(-i · 𝐴)) ∈ ℂ) |
17 | 15, 16 | syl 14 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(exp‘(-i · 𝐴))
∈ ℂ) |
18 | 12, 17 | subcld 8230 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) ∈ ℂ) |
19 | 3 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → i
∈ ℂ) |
20 | 2 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → 2
∈ ℂ) |
21 | | iap0 9101 |
. . . . . . 7
⊢ i #
0 |
22 | 21 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → i
# 0) |
23 | | 2ap0 8971 |
. . . . . . 7
⊢ 2 #
0 |
24 | 23 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → 2
# 0) |
25 | 18, 19, 20, 22, 24 | divdivap1d 8739 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i
· 𝐴)) −
(exp‘(-i · 𝐴))) / (i · 2))) |
26 | 5, 7, 25 | 3eqtr4a 2229 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(sin‘𝐴) =
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2)) |
27 | | cosval 11666 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
28 | 27 | adantr 274 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
29 | 26, 28 | oveq12d 5871 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((sin‘𝐴) /
(cos‘𝐴)) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) |
30 | 1, 29 | eqtrd 2203 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) |
31 | 18, 19, 22 | divclapd 8707 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈
ℂ) |
32 | 12, 17 | addcld 7939 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) ∈ ℂ) |
33 | | simpr 109 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(cos‘𝐴) #
0) |
34 | 28, 33 | eqbrtrrd 4013 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0) |
35 | 32, 20, 24 | divap0bd 8719 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0 ↔ (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2) # 0)) |
36 | 34, 35 | mpbird 166 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) # 0) |
37 | 31, 32, 20, 36, 24 | divcanap7d 8736 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / i) /
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))))) |
38 | 18, 19, 32, 22, 36 | divdivap1d 8739 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / (i ·
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴)))))) |
39 | 30, 37, 38 | 3eqtrd 2207 |
1
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))))) |