Proof of Theorem tanval2ap
| Step | Hyp | Ref
 | Expression | 
| 1 |   | tanvalap 11873 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
((sin‘𝐴) /
(cos‘𝐴))) | 
| 2 |   | 2cn 9061 | 
. . . . . . 7
⊢ 2 ∈
ℂ | 
| 3 |   | ax-icn 7974 | 
. . . . . . 7
⊢ i ∈
ℂ | 
| 4 | 2, 3 | mulcomi 8032 | 
. . . . . 6
⊢ (2
· i) = (i · 2) | 
| 5 | 4 | oveq2i 5933 | 
. . . . 5
⊢
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i ·
2)) | 
| 6 |   | sinval 11867 | 
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) | 
| 7 | 6 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) | 
| 8 |   | simpl 109 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
𝐴 ∈
ℂ) | 
| 9 |   | mulcl 8006 | 
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) | 
| 10 | 3, 8, 9 | sylancr 414 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(i · 𝐴) ∈
ℂ) | 
| 11 |   | efcl 11829 | 
. . . . . . . 8
⊢ ((i
· 𝐴) ∈ ℂ
→ (exp‘(i · 𝐴)) ∈ ℂ) | 
| 12 | 10, 11 | syl 14 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(exp‘(i · 𝐴))
∈ ℂ) | 
| 13 |   | negicn 8227 | 
. . . . . . . . 9
⊢ -i ∈
ℂ | 
| 14 |   | mulcl 8006 | 
. . . . . . . . 9
⊢ ((-i
∈ ℂ ∧ 𝐴
∈ ℂ) → (-i · 𝐴) ∈ ℂ) | 
| 15 | 13, 8, 14 | sylancr 414 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(-i · 𝐴) ∈
ℂ) | 
| 16 |   | efcl 11829 | 
. . . . . . . 8
⊢ ((-i
· 𝐴) ∈ ℂ
→ (exp‘(-i · 𝐴)) ∈ ℂ) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(exp‘(-i · 𝐴))
∈ ℂ) | 
| 18 | 12, 17 | subcld 8337 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) ∈ ℂ) | 
| 19 | 3 | a1i 9 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → i
∈ ℂ) | 
| 20 | 2 | a1i 9 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → 2
∈ ℂ) | 
| 21 |   | iap0 9214 | 
. . . . . . 7
⊢ i #
0 | 
| 22 | 21 | a1i 9 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → i
# 0) | 
| 23 |   | 2ap0 9083 | 
. . . . . . 7
⊢ 2 #
0 | 
| 24 | 23 | a1i 9 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → 2
# 0) | 
| 25 | 18, 19, 20, 22, 24 | divdivap1d 8849 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i
· 𝐴)) −
(exp‘(-i · 𝐴))) / (i · 2))) | 
| 26 | 5, 7, 25 | 3eqtr4a 2255 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(sin‘𝐴) =
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2)) | 
| 27 |   | cosval 11868 | 
. . . . 5
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | 
| 28 | 27 | adantr 276 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | 
| 29 | 26, 28 | oveq12d 5940 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((sin‘𝐴) /
(cos‘𝐴)) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) | 
| 30 | 1, 29 | eqtrd 2229 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) | 
| 31 | 18, 19, 22 | divclapd 8817 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈
ℂ) | 
| 32 | 12, 17 | addcld 8046 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) ∈ ℂ) | 
| 33 |   | simpr 110 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(cos‘𝐴) #
0) | 
| 34 | 28, 33 | eqbrtrrd 4057 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0) | 
| 35 | 32, 20, 24 | divap0bd 8829 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0 ↔ (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2) # 0)) | 
| 36 | 34, 35 | mpbird 167 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) # 0) | 
| 37 | 31, 32, 20, 36, 24 | divcanap7d 8846 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / i) /
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))))) | 
| 38 | 18, 19, 32, 22, 36 | divdivap1d 8849 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / (i ·
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴)))))) | 
| 39 | 30, 37, 38 | 3eqtrd 2233 | 
1
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))))) |