ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval2ap GIF version

Theorem tanval2ap 11689
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval2ap ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))

Proof of Theorem tanval2ap
StepHypRef Expression
1 tanvalap 11684 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2 2cn 8963 . . . . . . 7 2 ∈ ℂ
3 ax-icn 7881 . . . . . . 7 i ∈ ℂ
42, 3mulcomi 7938 . . . . . 6 (2 · i) = (i · 2)
54oveq2i 5876 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2))
6 sinval 11678 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
76adantr 276 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
8 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ ℂ)
9 mulcl 7913 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
103, 8, 9sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (i · 𝐴) ∈ ℂ)
11 efcl 11640 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (exp‘(i · 𝐴)) ∈ ℂ)
13 negicn 8132 . . . . . . . . 9 -i ∈ ℂ
14 mulcl 7913 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1513, 8, 14sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (-i · 𝐴) ∈ ℂ)
16 efcl 11640 . . . . . . . 8 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1715, 16syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
1812, 17subcld 8242 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
193a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → i ∈ ℂ)
202a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 2 ∈ ℂ)
21 iap0 9115 . . . . . . 7 i # 0
2221a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → i # 0)
23 2ap0 8985 . . . . . . 7 2 # 0
2423a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 2 # 0)
2518, 19, 20, 22, 24divdivap1d 8752 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2)))
265, 7, 253eqtr4a 2234 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2))
27 cosval 11679 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2827adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2926, 28oveq12d 5883 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((sin‘𝐴) / (cos‘𝐴)) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
301, 29eqtrd 2208 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
3118, 19, 22divclapd 8720 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈ ℂ)
3212, 17addcld 7951 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
33 simpr 110 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) # 0)
3428, 33eqbrtrrd 4022 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0)
3532, 20, 24divap0bd 8732 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0 ↔ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0))
3634, 35mpbird 167 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0)
3731, 32, 20, 36, 24divcanap7d 8749 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3818, 19, 32, 22, 36divdivap1d 8752 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3930, 37, 383eqtrd 2212 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  0cc0 7786  ici 7788   + caddc 7789   · cmul 7791  cmin 8102  -cneg 8103   # cap 8512   / cdiv 8602  2c2 8943  expce 11618  sincsin 11620  cosccos 11621  tanctan 11622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-ico 9865  df-fz 9980  df-fzo 10113  df-seqfrec 10416  df-exp 10490  df-fac 10674  df-ihash 10724  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255  df-sumdc 11330  df-ef 11624  df-sin 11626  df-cos 11627  df-tan 11628
This theorem is referenced by:  tanval3ap  11690
  Copyright terms: Public domain W3C validator