Proof of Theorem tanval2ap
| Step | Hyp | Ref
| Expression |
| 1 | | tanvalap 11890 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
((sin‘𝐴) /
(cos‘𝐴))) |
| 2 | | 2cn 9078 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 3 | | ax-icn 7991 |
. . . . . . 7
⊢ i ∈
ℂ |
| 4 | 2, 3 | mulcomi 8049 |
. . . . . 6
⊢ (2
· i) = (i · 2) |
| 5 | 4 | oveq2i 5936 |
. . . . 5
⊢
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i ·
2)) |
| 6 | | sinval 11884 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
| 7 | 6 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
| 8 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
𝐴 ∈
ℂ) |
| 9 | | mulcl 8023 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
| 10 | 3, 8, 9 | sylancr 414 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(i · 𝐴) ∈
ℂ) |
| 11 | | efcl 11846 |
. . . . . . . 8
⊢ ((i
· 𝐴) ∈ ℂ
→ (exp‘(i · 𝐴)) ∈ ℂ) |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(exp‘(i · 𝐴))
∈ ℂ) |
| 13 | | negicn 8244 |
. . . . . . . . 9
⊢ -i ∈
ℂ |
| 14 | | mulcl 8023 |
. . . . . . . . 9
⊢ ((-i
∈ ℂ ∧ 𝐴
∈ ℂ) → (-i · 𝐴) ∈ ℂ) |
| 15 | 13, 8, 14 | sylancr 414 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(-i · 𝐴) ∈
ℂ) |
| 16 | | efcl 11846 |
. . . . . . . 8
⊢ ((-i
· 𝐴) ∈ ℂ
→ (exp‘(-i · 𝐴)) ∈ ℂ) |
| 17 | 15, 16 | syl 14 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(exp‘(-i · 𝐴))
∈ ℂ) |
| 18 | 12, 17 | subcld 8354 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) ∈ ℂ) |
| 19 | 3 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → i
∈ ℂ) |
| 20 | 2 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → 2
∈ ℂ) |
| 21 | | iap0 9231 |
. . . . . . 7
⊢ i #
0 |
| 22 | 21 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → i
# 0) |
| 23 | | 2ap0 9100 |
. . . . . . 7
⊢ 2 #
0 |
| 24 | 23 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) → 2
# 0) |
| 25 | 18, 19, 20, 22, 24 | divdivap1d 8866 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i
· 𝐴)) −
(exp‘(-i · 𝐴))) / (i · 2))) |
| 26 | 5, 7, 25 | 3eqtr4a 2255 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(sin‘𝐴) =
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2)) |
| 27 | | cosval 11885 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 28 | 27 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(cos‘𝐴) =
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 29 | 26, 28 | oveq12d 5943 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((sin‘𝐴) /
(cos‘𝐴)) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) |
| 30 | 1, 29 | eqtrd 2229 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2))) |
| 31 | 18, 19, 22 | divclapd 8834 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈
ℂ) |
| 32 | 12, 17 | addcld 8063 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) ∈ ℂ) |
| 33 | | simpr 110 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(cos‘𝐴) #
0) |
| 34 | 28, 33 | eqbrtrrd 4058 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0) |
| 35 | 32, 20, 24 | divap0bd 8846 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0 ↔ (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2) # 0)) |
| 36 | 34, 35 | mpbird 167 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))) # 0) |
| 37 | 31, 32, 20, 36, 24 | divcanap7d 8863 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / i) /
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴))))) |
| 38 | 18, 19, 32, 22, 36 | divdivap1d 8866 |
. 2
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i
· 𝐴))) / (i ·
((exp‘(i · 𝐴))
+ (exp‘(-i · 𝐴)))))) |
| 39 | 30, 37, 38 | 3eqtrd 2233 |
1
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) # 0) →
(tan‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i
· 𝐴)) +
(exp‘(-i · 𝐴)))))) |