ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval2ap GIF version

Theorem tanval2ap 11966
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval2ap ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))

Proof of Theorem tanval2ap
StepHypRef Expression
1 tanvalap 11961 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2 2cn 9106 . . . . . . 7 2 ∈ ℂ
3 ax-icn 8019 . . . . . . 7 i ∈ ℂ
42, 3mulcomi 8077 . . . . . 6 (2 · i) = (i · 2)
54oveq2i 5954 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2))
6 sinval 11955 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
76adantr 276 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
8 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 𝐴 ∈ ℂ)
9 mulcl 8051 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
103, 8, 9sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (i · 𝐴) ∈ ℂ)
11 efcl 11917 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (exp‘(i · 𝐴)) ∈ ℂ)
13 negicn 8272 . . . . . . . . 9 -i ∈ ℂ
14 mulcl 8051 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1513, 8, 14sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (-i · 𝐴) ∈ ℂ)
16 efcl 11917 . . . . . . . 8 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1715, 16syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
1812, 17subcld 8382 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
193a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → i ∈ ℂ)
202a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 2 ∈ ℂ)
21 iap0 9259 . . . . . . 7 i # 0
2221a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → i # 0)
23 2ap0 9128 . . . . . . 7 2 # 0
2423a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → 2 # 0)
2518, 19, 20, 22, 24divdivap1d 8894 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · 2)))
265, 7, 253eqtr4a 2263 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (sin‘𝐴) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2))
27 cosval 11956 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2827adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
2926, 28oveq12d 5961 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((sin‘𝐴) / (cos‘𝐴)) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
301, 29eqtrd 2237 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)))
3118, 19, 22divclapd 8862 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) ∈ ℂ)
3212, 17addcld 8091 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
33 simpr 110 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (cos‘𝐴) # 0)
3428, 33eqbrtrrd 4067 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0)
3532, 20, 24divap0bd 8874 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0 ↔ (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0))
3634, 35mpbird 167 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0)
3731, 32, 20, 36, 24divcanap7d 8891 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / 2) / (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) = ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3818, 19, 32, 22, 36divdivap1d 8894 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / i) / ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3930, 37, 383eqtrd 2241 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  0cc0 7924  ici 7926   + caddc 7927   · cmul 7929  cmin 8242  -cneg 8243   # cap 8653   / cdiv 8744  2c2 9086  expce 11895  sincsin 11897  cosccos 11898  tanctan 11899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ico 10015  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607  df-ef 11901  df-sin 11903  df-cos 11904  df-tan 11905
This theorem is referenced by:  tanval3ap  11967
  Copyright terms: Public domain W3C validator