ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcli GIF version

Theorem mulcli 7904
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcli (𝐴 · 𝐵) ∈ ℂ

Proof of Theorem mulcli
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcl 7880 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
41, 2, 3mp2an 423 1 (𝐴 · 𝐵) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2136  (class class class)co 5842  cc 7751   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107  ax-mulcl 7851
This theorem is referenced by:  ixi  8481  2mulicn  9079  numma  9365  nummac  9366  9t11e99  9451  decbin2  9462  irec  10554  binom2i  10563  3dec  10627  rei  10841  imi  10842  3dvdsdec  11802  3dvds2dec  11803  odd2np1  11810  3lcm2e6woprm  12018  6lcm4e12  12019  sinhalfpilem  13352  ef2pi  13366  ef2kpi  13367  efper  13368  sinperlem  13369  sin2kpi  13372  cos2kpi  13373  sin2pim  13374  cos2pim  13375  sincos4thpi  13401  sincos6thpi  13403  abssinper  13407  cosq34lt1  13411  lgsdir2lem5  13573
  Copyright terms: Public domain W3C validator