ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcli GIF version

Theorem mulcli 8147
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcli (𝐴 · 𝐵) ∈ ℂ

Proof of Theorem mulcli
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcl 8122 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2200  (class class class)co 6000  cc 7993   · cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcl 8093
This theorem is referenced by:  ixi  8726  2mulicn  9329  numma  9617  nummac  9618  9t11e99  9703  decbin2  9714  irec  10856  binom2i  10865  3dec  10931  rei  11405  imi  11406  3dvdsdec  12371  3dvds2dec  12372  odd2np1  12379  3lcm2e6woprm  12603  6lcm4e12  12604  modxai  12934  karatsuba  12948  sinhalfpilem  15459  ef2pi  15473  ef2kpi  15474  efper  15475  sinperlem  15476  sin2kpi  15479  cos2kpi  15480  sin2pim  15481  cos2pim  15482  sincos4thpi  15508  sincos6thpi  15510  abssinper  15514  cosq34lt1  15518  lgsdir2lem5  15705  2lgsoddprmlem3c  15782  2lgsoddprmlem3d  15783
  Copyright terms: Public domain W3C validator