Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcli | GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 7880 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 · cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-mulcl 7851 |
This theorem is referenced by: ixi 8481 2mulicn 9079 numma 9365 nummac 9366 9t11e99 9451 decbin2 9462 irec 10554 binom2i 10563 3dec 10627 rei 10841 imi 10842 3dvdsdec 11802 3dvds2dec 11803 odd2np1 11810 3lcm2e6woprm 12018 6lcm4e12 12019 sinhalfpilem 13352 ef2pi 13366 ef2kpi 13367 efper 13368 sinperlem 13369 sin2kpi 13372 cos2kpi 13373 sin2pim 13374 cos2pim 13375 sincos4thpi 13401 sincos6thpi 13403 abssinper 13407 cosq34lt1 13411 lgsdir2lem5 13573 |
Copyright terms: Public domain | W3C validator |