![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcli | GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 7985 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 (class class class)co 5906 ℂcc 7856 · cmul 7863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 7956 |
This theorem is referenced by: ixi 8588 2mulicn 9190 numma 9477 nummac 9478 9t11e99 9563 decbin2 9574 irec 10684 binom2i 10693 3dec 10759 rei 11017 imi 11018 3dvdsdec 11980 3dvds2dec 11981 odd2np1 11988 3lcm2e6woprm 12198 6lcm4e12 12199 sinhalfpilem 14854 ef2pi 14868 ef2kpi 14869 efper 14870 sinperlem 14871 sin2kpi 14874 cos2kpi 14875 sin2pim 14876 cos2pim 14877 sincos4thpi 14903 sincos6thpi 14905 abssinper 14909 cosq34lt1 14913 lgsdir2lem5 15076 2lgsoddprmlem3c 15121 2lgsoddprmlem3d 15122 |
Copyright terms: Public domain | W3C validator |