| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcli | GIF version | ||
| Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcl 8025 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 7996 |
| This theorem is referenced by: ixi 8629 2mulicn 9232 numma 9519 nummac 9520 9t11e99 9605 decbin2 9616 irec 10750 binom2i 10759 3dec 10825 rei 11083 imi 11084 3dvdsdec 12049 3dvds2dec 12050 odd2np1 12057 3lcm2e6woprm 12281 6lcm4e12 12282 modxai 12612 karatsuba 12626 sinhalfpilem 15113 ef2pi 15127 ef2kpi 15128 efper 15129 sinperlem 15130 sin2kpi 15133 cos2kpi 15134 sin2pim 15135 cos2pim 15136 sincos4thpi 15162 sincos6thpi 15164 abssinper 15168 cosq34lt1 15172 lgsdir2lem5 15359 2lgsoddprmlem3c 15436 2lgsoddprmlem3d 15437 |
| Copyright terms: Public domain | W3C validator |