| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulcli | GIF version | ||
| Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ | 
| axi.2 | ⊢ 𝐵 ∈ ℂ | 
| Ref | Expression | 
|---|---|
| mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcl 8006 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 · cmul 7884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 7977 | 
| This theorem is referenced by: ixi 8610 2mulicn 9213 numma 9500 nummac 9501 9t11e99 9586 decbin2 9597 irec 10731 binom2i 10740 3dec 10806 rei 11064 imi 11065 3dvdsdec 12030 3dvds2dec 12031 odd2np1 12038 3lcm2e6woprm 12254 6lcm4e12 12255 modxai 12585 karatsuba 12599 sinhalfpilem 15027 ef2pi 15041 ef2kpi 15042 efper 15043 sinperlem 15044 sin2kpi 15047 cos2kpi 15048 sin2pim 15049 cos2pim 15050 sincos4thpi 15076 sincos6thpi 15078 abssinper 15082 cosq34lt1 15086 lgsdir2lem5 15273 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 | 
| Copyright terms: Public domain | W3C validator |