| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcli | GIF version | ||
| Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcl 8023 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 7994 |
| This theorem is referenced by: ixi 8627 2mulicn 9230 numma 9517 nummac 9518 9t11e99 9603 decbin2 9614 irec 10748 binom2i 10757 3dec 10823 rei 11081 imi 11082 3dvdsdec 12047 3dvds2dec 12048 odd2np1 12055 3lcm2e6woprm 12279 6lcm4e12 12280 modxai 12610 karatsuba 12624 sinhalfpilem 15111 ef2pi 15125 ef2kpi 15126 efper 15127 sinperlem 15128 sin2kpi 15131 cos2kpi 15132 sin2pim 15133 cos2pim 15134 sincos4thpi 15160 sincos6thpi 15162 abssinper 15166 cosq34lt1 15170 lgsdir2lem5 15357 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 |
| Copyright terms: Public domain | W3C validator |