| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcli | GIF version | ||
| Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcl 8087 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 (class class class)co 5967 ℂcc 7958 · cmul 7965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 8058 |
| This theorem is referenced by: ixi 8691 2mulicn 9294 numma 9582 nummac 9583 9t11e99 9668 decbin2 9679 irec 10821 binom2i 10830 3dec 10896 rei 11325 imi 11326 3dvdsdec 12291 3dvds2dec 12292 odd2np1 12299 3lcm2e6woprm 12523 6lcm4e12 12524 modxai 12854 karatsuba 12868 sinhalfpilem 15378 ef2pi 15392 ef2kpi 15393 efper 15394 sinperlem 15395 sin2kpi 15398 cos2kpi 15399 sin2pim 15400 cos2pim 15401 sincos4thpi 15427 sincos6thpi 15429 abssinper 15433 cosq34lt1 15437 lgsdir2lem5 15624 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 |
| Copyright terms: Public domain | W3C validator |