| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcli | GIF version | ||
| Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcl 8122 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 · cmul 8000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 8093 |
| This theorem is referenced by: ixi 8726 2mulicn 9329 numma 9617 nummac 9618 9t11e99 9703 decbin2 9714 irec 10856 binom2i 10865 3dec 10931 rei 11405 imi 11406 3dvdsdec 12371 3dvds2dec 12372 odd2np1 12379 3lcm2e6woprm 12603 6lcm4e12 12604 modxai 12934 karatsuba 12948 sinhalfpilem 15459 ef2pi 15473 ef2kpi 15474 efper 15475 sinperlem 15476 sin2kpi 15479 cos2kpi 15480 sin2pim 15481 cos2pim 15482 sincos4thpi 15508 sincos6thpi 15510 abssinper 15514 cosq34lt1 15518 lgsdir2lem5 15705 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 |
| Copyright terms: Public domain | W3C validator |