ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcli GIF version

Theorem mulcli 7975
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 ๐ด โˆˆ โ„‚
axi.2 ๐ต โˆˆ โ„‚
Assertion
Ref Expression
mulcli (๐ด ยท ๐ต) โˆˆ โ„‚

Proof of Theorem mulcli
StepHypRef Expression
1 axi.1 . 2 ๐ด โˆˆ โ„‚
2 axi.2 . 2 ๐ต โˆˆ โ„‚
3 mulcl 7951 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท ๐ต) โˆˆ โ„‚)
41, 2, 3mp2an 426 1 (๐ด ยท ๐ต) โˆˆ โ„‚
Colors of variables: wff set class
Syntax hints:   โˆˆ wcel 2158  (class class class)co 5888  โ„‚cc 7822   ยท cmul 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcl 7922
This theorem is referenced by:  ixi  8553  2mulicn  9154  numma  9440  nummac  9441  9t11e99  9526  decbin2  9537  irec  10633  binom2i  10642  3dec  10707  rei  10921  imi  10922  3dvdsdec  11883  3dvds2dec  11884  odd2np1  11891  3lcm2e6woprm  12099  6lcm4e12  12100  sinhalfpilem  14483  ef2pi  14497  ef2kpi  14498  efper  14499  sinperlem  14500  sin2kpi  14503  cos2kpi  14504  sin2pim  14505  cos2pim  14506  sincos4thpi  14532  sincos6thpi  14534  abssinper  14538  cosq34lt1  14542  lgsdir2lem5  14704  2lgsoddprmlem3c  14728  2lgsoddprmlem3d  14729
  Copyright terms: Public domain W3C validator