| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcli | GIF version | ||
| Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcl 8052 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 · cmul 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcl 8023 |
| This theorem is referenced by: ixi 8656 2mulicn 9259 numma 9547 nummac 9548 9t11e99 9633 decbin2 9644 irec 10784 binom2i 10793 3dec 10859 rei 11210 imi 11211 3dvdsdec 12176 3dvds2dec 12177 odd2np1 12184 3lcm2e6woprm 12408 6lcm4e12 12409 modxai 12739 karatsuba 12753 sinhalfpilem 15263 ef2pi 15277 ef2kpi 15278 efper 15279 sinperlem 15280 sin2kpi 15283 cos2kpi 15284 sin2pim 15285 cos2pim 15286 sincos4thpi 15312 sincos6thpi 15314 abssinper 15318 cosq34lt1 15322 lgsdir2lem5 15509 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 |
| Copyright terms: Public domain | W3C validator |