ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthi GIF version

Theorem pockthi 12889
Description: Pocklington's theorem, which gives a sufficient criterion for a number 𝑁 to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12888 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p 𝑃 ∈ ℙ
pockthi.g 𝐺 ∈ ℕ
pockthi.m 𝑀 = (𝐺 · 𝑃)
pockthi.n 𝑁 = (𝑀 + 1)
pockthi.d 𝐷 ∈ ℕ
pockthi.e 𝐸 ∈ ℕ
pockthi.a 𝐴 ∈ ℕ
pockthi.fac 𝑀 = (𝐷 · (𝑃𝐸))
pockthi.gt 𝐷 < (𝑃𝐸)
pockthi.mod ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
pockthi.gcd (((𝐴𝐺) − 1) gcd 𝑁) = 1
Assertion
Ref Expression
pockthi 𝑁 ∈ ℙ

Proof of Theorem pockthi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2 𝐷 ∈ ℕ
2 pockthi.p . . . . . 6 𝑃 ∈ ℙ
3 prmnn 12640 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3ax-mp 5 . . . . 5 𝑃 ∈ ℕ
5 pockthi.e . . . . . 6 𝐸 ∈ ℕ
65nnnn0i 9385 . . . . 5 𝐸 ∈ ℕ0
7 nnexpcl 10782 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0) → (𝑃𝐸) ∈ ℕ)
84, 6, 7mp2an 426 . . . 4 (𝑃𝐸) ∈ ℕ
98a1i 9 . . 3 (𝐷 ∈ ℕ → (𝑃𝐸) ∈ ℕ)
10 id 19 . . 3 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ)
11 pockthi.gt . . . 4 𝐷 < (𝑃𝐸)
1211a1i 9 . . 3 (𝐷 ∈ ℕ → 𝐷 < (𝑃𝐸))
13 pockthi.n . . . . 5 𝑁 = (𝑀 + 1)
14 pockthi.fac . . . . . . 7 𝑀 = (𝐷 · (𝑃𝐸))
151nncni 9128 . . . . . . . 8 𝐷 ∈ ℂ
168nncni 9128 . . . . . . . 8 (𝑃𝐸) ∈ ℂ
1715, 16mulcomi 8160 . . . . . . 7 (𝐷 · (𝑃𝐸)) = ((𝑃𝐸) · 𝐷)
1814, 17eqtri 2250 . . . . . 6 𝑀 = ((𝑃𝐸) · 𝐷)
1918oveq1i 6017 . . . . 5 (𝑀 + 1) = (((𝑃𝐸) · 𝐷) + 1)
2013, 19eqtri 2250 . . . 4 𝑁 = (((𝑃𝐸) · 𝐷) + 1)
2120a1i 9 . . 3 (𝐷 ∈ ℕ → 𝑁 = (((𝑃𝐸) · 𝐷) + 1))
22 prmdvdsexpb 12679 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
232, 5, 22mp3an23 1363 . . . . . 6 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
24 pockthi.m . . . . . . . . . . . . 13 𝑀 = (𝐺 · 𝑃)
25 pockthi.g . . . . . . . . . . . . . 14 𝐺 ∈ ℕ
2625, 4nnmulcli 9140 . . . . . . . . . . . . 13 (𝐺 · 𝑃) ∈ ℕ
2724, 26eqeltri 2302 . . . . . . . . . . . 12 𝑀 ∈ ℕ
2827nncni 9128 . . . . . . . . . . 11 𝑀 ∈ ℂ
29 ax-1cn 8100 . . . . . . . . . . 11 1 ∈ ℂ
3028, 29, 13mvrraddi 8371 . . . . . . . . . 10 (𝑁 − 1) = 𝑀
3130oveq2i 6018 . . . . . . . . 9 (𝐴↑(𝑁 − 1)) = (𝐴𝑀)
3231oveq1i 6017 . . . . . . . 8 ((𝐴↑(𝑁 − 1)) mod 𝑁) = ((𝐴𝑀) mod 𝑁)
33 pockthi.mod . . . . . . . . 9 ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
34 peano2nn 9130 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
3527, 34ax-mp 5 . . . . . . . . . . . 12 (𝑀 + 1) ∈ ℕ
3613, 35eqeltri 2302 . . . . . . . . . . 11 𝑁 ∈ ℕ
37 nnq 9836 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
3836, 37ax-mp 5 . . . . . . . . . 10 𝑁 ∈ ℚ
3927nngt0i 9148 . . . . . . . . . . . 12 0 < 𝑀
4027nnrei 9127 . . . . . . . . . . . . 13 𝑀 ∈ ℝ
41 1re 8153 . . . . . . . . . . . . 13 1 ∈ ℝ
42 ltaddpos2 8608 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑀 ↔ 1 < (𝑀 + 1)))
4340, 41, 42mp2an 426 . . . . . . . . . . . 12 (0 < 𝑀 ↔ 1 < (𝑀 + 1))
4439, 43mpbi 145 . . . . . . . . . . 11 1 < (𝑀 + 1)
4544, 13breqtrri 4110 . . . . . . . . . 10 1 < 𝑁
46 q1mod 10586 . . . . . . . . . 10 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4738, 45, 46mp2an 426 . . . . . . . . 9 (1 mod 𝑁) = 1
4833, 47eqtri 2250 . . . . . . . 8 ((𝐴𝑀) mod 𝑁) = 1
4932, 48eqtri 2250 . . . . . . 7 ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1
50 oveq2 6015 . . . . . . . . . . . 12 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = ((𝑁 − 1) / 𝑃))
5125nncni 9128 . . . . . . . . . . . . . . 15 𝐺 ∈ ℂ
524nncni 9128 . . . . . . . . . . . . . . 15 𝑃 ∈ ℂ
5351, 52mulcomi 8160 . . . . . . . . . . . . . 14 (𝐺 · 𝑃) = (𝑃 · 𝐺)
5430, 24, 533eqtrri 2255 . . . . . . . . . . . . 13 (𝑃 · 𝐺) = (𝑁 − 1)
5536nncni 9128 . . . . . . . . . . . . . . 15 𝑁 ∈ ℂ
5655, 29subcli 8430 . . . . . . . . . . . . . 14 (𝑁 − 1) ∈ ℂ
574nnap0i 9149 . . . . . . . . . . . . . 14 𝑃 # 0
5856, 52, 51, 57divmulapi 8921 . . . . . . . . . . . . 13 (((𝑁 − 1) / 𝑃) = 𝐺 ↔ (𝑃 · 𝐺) = (𝑁 − 1))
5954, 58mpbir 146 . . . . . . . . . . . 12 ((𝑁 − 1) / 𝑃) = 𝐺
6050, 59eqtrdi 2278 . . . . . . . . . . 11 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = 𝐺)
6160oveq2d 6023 . . . . . . . . . 10 (𝑥 = 𝑃 → (𝐴↑((𝑁 − 1) / 𝑥)) = (𝐴𝐺))
6261oveq1d 6022 . . . . . . . . 9 (𝑥 = 𝑃 → ((𝐴↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴𝐺) − 1))
6362oveq1d 6022 . . . . . . . 8 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴𝐺) − 1) gcd 𝑁))
64 pockthi.gcd . . . . . . . 8 (((𝐴𝐺) − 1) gcd 𝑁) = 1
6563, 64eqtrdi 2278 . . . . . . 7 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)
66 pockthi.a . . . . . . . . 9 𝐴 ∈ ℕ
6766nnzi 9475 . . . . . . . 8 𝐴 ∈ ℤ
68 oveq1 6014 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦↑(𝑁 − 1)) = (𝐴↑(𝑁 − 1)))
6968oveq1d 6022 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑦↑(𝑁 − 1)) mod 𝑁) = ((𝐴↑(𝑁 − 1)) mod 𝑁))
7069eqeq1d 2238 . . . . . . . . . 10 (𝑦 = 𝐴 → (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ↔ ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1))
71 oveq1 6014 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦↑((𝑁 − 1) / 𝑥)) = (𝐴↑((𝑁 − 1) / 𝑥)))
7271oveq1d 6022 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((𝑦↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴↑((𝑁 − 1) / 𝑥)) − 1))
7372oveq1d 6022 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁))
7473eqeq1d 2238 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1 ↔ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7570, 74anbi12d 473 . . . . . . . . 9 (𝑦 = 𝐴 → ((((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) ↔ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
7675rspcev 2907 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7767, 76mpan 424 . . . . . . 7 ((((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7849, 65, 77sylancr 414 . . . . . 6 (𝑥 = 𝑃 → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7923, 78biimtrdi 163 . . . . 5 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
8079rgen 2583 . . . 4 𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
8180a1i 9 . . 3 (𝐷 ∈ ℕ → ∀𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
829, 10, 12, 21, 81pockthg 12888 . 2 (𝐷 ∈ ℕ → 𝑁 ∈ ℙ)
831, 82ax-mp 5 1 𝑁 ∈ ℙ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4083  (class class class)co 6007  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cmin 8325   / cdiv 8827  cn 9118  0cn0 9377  cz 9454  cq 9822   mod cmo 10552  cexp 10768  cdvds 12306   gcd cgcd 12482  cprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-odz 12740  df-phi 12741  df-pc 12816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator