ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthi GIF version

Theorem pockthi 12393
Description: Pocklington's theorem, which gives a sufficient criterion for a number 𝑁 to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12392 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p 𝑃 ∈ ℙ
pockthi.g 𝐺 ∈ ℕ
pockthi.m 𝑀 = (𝐺 · 𝑃)
pockthi.n 𝑁 = (𝑀 + 1)
pockthi.d 𝐷 ∈ ℕ
pockthi.e 𝐸 ∈ ℕ
pockthi.a 𝐴 ∈ ℕ
pockthi.fac 𝑀 = (𝐷 · (𝑃𝐸))
pockthi.gt 𝐷 < (𝑃𝐸)
pockthi.mod ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
pockthi.gcd (((𝐴𝐺) − 1) gcd 𝑁) = 1
Assertion
Ref Expression
pockthi 𝑁 ∈ ℙ

Proof of Theorem pockthi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2 𝐷 ∈ ℕ
2 pockthi.p . . . . . 6 𝑃 ∈ ℙ
3 prmnn 12145 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3ax-mp 5 . . . . 5 𝑃 ∈ ℕ
5 pockthi.e . . . . . 6 𝐸 ∈ ℕ
65nnnn0i 9215 . . . . 5 𝐸 ∈ ℕ0
7 nnexpcl 10567 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0) → (𝑃𝐸) ∈ ℕ)
84, 6, 7mp2an 426 . . . 4 (𝑃𝐸) ∈ ℕ
98a1i 9 . . 3 (𝐷 ∈ ℕ → (𝑃𝐸) ∈ ℕ)
10 id 19 . . 3 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ)
11 pockthi.gt . . . 4 𝐷 < (𝑃𝐸)
1211a1i 9 . . 3 (𝐷 ∈ ℕ → 𝐷 < (𝑃𝐸))
13 pockthi.n . . . . 5 𝑁 = (𝑀 + 1)
14 pockthi.fac . . . . . . 7 𝑀 = (𝐷 · (𝑃𝐸))
151nncni 8960 . . . . . . . 8 𝐷 ∈ ℂ
168nncni 8960 . . . . . . . 8 (𝑃𝐸) ∈ ℂ
1715, 16mulcomi 7994 . . . . . . 7 (𝐷 · (𝑃𝐸)) = ((𝑃𝐸) · 𝐷)
1814, 17eqtri 2210 . . . . . 6 𝑀 = ((𝑃𝐸) · 𝐷)
1918oveq1i 5907 . . . . 5 (𝑀 + 1) = (((𝑃𝐸) · 𝐷) + 1)
2013, 19eqtri 2210 . . . 4 𝑁 = (((𝑃𝐸) · 𝐷) + 1)
2120a1i 9 . . 3 (𝐷 ∈ ℕ → 𝑁 = (((𝑃𝐸) · 𝐷) + 1))
22 prmdvdsexpb 12184 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
232, 5, 22mp3an23 1340 . . . . . 6 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
24 pockthi.m . . . . . . . . . . . . 13 𝑀 = (𝐺 · 𝑃)
25 pockthi.g . . . . . . . . . . . . . 14 𝐺 ∈ ℕ
2625, 4nnmulcli 8972 . . . . . . . . . . . . 13 (𝐺 · 𝑃) ∈ ℕ
2724, 26eqeltri 2262 . . . . . . . . . . . 12 𝑀 ∈ ℕ
2827nncni 8960 . . . . . . . . . . 11 𝑀 ∈ ℂ
29 ax-1cn 7935 . . . . . . . . . . 11 1 ∈ ℂ
3028, 29, 13mvrraddi 8205 . . . . . . . . . 10 (𝑁 − 1) = 𝑀
3130oveq2i 5908 . . . . . . . . 9 (𝐴↑(𝑁 − 1)) = (𝐴𝑀)
3231oveq1i 5907 . . . . . . . 8 ((𝐴↑(𝑁 − 1)) mod 𝑁) = ((𝐴𝑀) mod 𝑁)
33 pockthi.mod . . . . . . . . 9 ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
34 peano2nn 8962 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
3527, 34ax-mp 5 . . . . . . . . . . . 12 (𝑀 + 1) ∈ ℕ
3613, 35eqeltri 2262 . . . . . . . . . . 11 𝑁 ∈ ℕ
37 nnq 9665 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
3836, 37ax-mp 5 . . . . . . . . . 10 𝑁 ∈ ℚ
3927nngt0i 8980 . . . . . . . . . . . 12 0 < 𝑀
4027nnrei 8959 . . . . . . . . . . . . 13 𝑀 ∈ ℝ
41 1re 7987 . . . . . . . . . . . . 13 1 ∈ ℝ
42 ltaddpos2 8441 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑀 ↔ 1 < (𝑀 + 1)))
4340, 41, 42mp2an 426 . . . . . . . . . . . 12 (0 < 𝑀 ↔ 1 < (𝑀 + 1))
4439, 43mpbi 145 . . . . . . . . . . 11 1 < (𝑀 + 1)
4544, 13breqtrri 4045 . . . . . . . . . 10 1 < 𝑁
46 q1mod 10389 . . . . . . . . . 10 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4738, 45, 46mp2an 426 . . . . . . . . 9 (1 mod 𝑁) = 1
4833, 47eqtri 2210 . . . . . . . 8 ((𝐴𝑀) mod 𝑁) = 1
4932, 48eqtri 2210 . . . . . . 7 ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1
50 oveq2 5905 . . . . . . . . . . . 12 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = ((𝑁 − 1) / 𝑃))
5125nncni 8960 . . . . . . . . . . . . . . 15 𝐺 ∈ ℂ
524nncni 8960 . . . . . . . . . . . . . . 15 𝑃 ∈ ℂ
5351, 52mulcomi 7994 . . . . . . . . . . . . . 14 (𝐺 · 𝑃) = (𝑃 · 𝐺)
5430, 24, 533eqtrri 2215 . . . . . . . . . . . . 13 (𝑃 · 𝐺) = (𝑁 − 1)
5536nncni 8960 . . . . . . . . . . . . . . 15 𝑁 ∈ ℂ
5655, 29subcli 8264 . . . . . . . . . . . . . 14 (𝑁 − 1) ∈ ℂ
574nnap0i 8981 . . . . . . . . . . . . . 14 𝑃 # 0
5856, 52, 51, 57divmulapi 8754 . . . . . . . . . . . . 13 (((𝑁 − 1) / 𝑃) = 𝐺 ↔ (𝑃 · 𝐺) = (𝑁 − 1))
5954, 58mpbir 146 . . . . . . . . . . . 12 ((𝑁 − 1) / 𝑃) = 𝐺
6050, 59eqtrdi 2238 . . . . . . . . . . 11 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = 𝐺)
6160oveq2d 5913 . . . . . . . . . 10 (𝑥 = 𝑃 → (𝐴↑((𝑁 − 1) / 𝑥)) = (𝐴𝐺))
6261oveq1d 5912 . . . . . . . . 9 (𝑥 = 𝑃 → ((𝐴↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴𝐺) − 1))
6362oveq1d 5912 . . . . . . . 8 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴𝐺) − 1) gcd 𝑁))
64 pockthi.gcd . . . . . . . 8 (((𝐴𝐺) − 1) gcd 𝑁) = 1
6563, 64eqtrdi 2238 . . . . . . 7 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)
66 pockthi.a . . . . . . . . 9 𝐴 ∈ ℕ
6766nnzi 9305 . . . . . . . 8 𝐴 ∈ ℤ
68 oveq1 5904 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦↑(𝑁 − 1)) = (𝐴↑(𝑁 − 1)))
6968oveq1d 5912 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑦↑(𝑁 − 1)) mod 𝑁) = ((𝐴↑(𝑁 − 1)) mod 𝑁))
7069eqeq1d 2198 . . . . . . . . . 10 (𝑦 = 𝐴 → (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ↔ ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1))
71 oveq1 5904 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦↑((𝑁 − 1) / 𝑥)) = (𝐴↑((𝑁 − 1) / 𝑥)))
7271oveq1d 5912 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((𝑦↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴↑((𝑁 − 1) / 𝑥)) − 1))
7372oveq1d 5912 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁))
7473eqeq1d 2198 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1 ↔ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7570, 74anbi12d 473 . . . . . . . . 9 (𝑦 = 𝐴 → ((((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) ↔ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
7675rspcev 2856 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7767, 76mpan 424 . . . . . . 7 ((((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7849, 65, 77sylancr 414 . . . . . 6 (𝑥 = 𝑃 → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7923, 78biimtrdi 163 . . . . 5 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
8079rgen 2543 . . . 4 𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
8180a1i 9 . . 3 (𝐷 ∈ ℕ → ∀𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
829, 10, 12, 21, 81pockthg 12392 . 2 (𝐷 ∈ ℕ → 𝑁 ∈ ℙ)
831, 82ax-mp 5 1 𝑁 ∈ ℙ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  wrex 2469   class class class wbr 4018  (class class class)co 5897  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847   < clt 8023  cmin 8159   / cdiv 8660  cn 8950  0cn0 9207  cz 9284  cq 9651   mod cmo 10355  cexp 10553  cdvds 11829   gcd cgcd 11978  cprime 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-2o 6443  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-xnn0 9271  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-proddc 11594  df-dvds 11830  df-gcd 11979  df-prm 12143  df-odz 12245  df-phi 12246  df-pc 12320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator