| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version | ||
| Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 9t11e99 | ⊢ (9 · ;11) = ;99 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9123 | . . . 4 ⊢ 9 ∈ ℂ | |
| 2 | 10nn0 9520 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 3 | 2 | nn0cni 9306 | . . . . 5 ⊢ ;10 ∈ ℂ |
| 4 | ax-1cn 8017 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | mulcli 8076 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
| 6 | 1, 5, 4 | adddii 8081 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
| 7 | 3 | mulridi 8073 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
| 8 | 7 | oveq2i 5954 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
| 9 | 1, 3 | mulcomi 8077 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
| 10 | 8, 9 | eqtri 2225 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
| 11 | 1 | mulridi 8073 | . . . 4 ⊢ (9 · 1) = 9 |
| 12 | 10, 11 | oveq12i 5955 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
| 13 | 6, 12 | eqtri 2225 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
| 14 | dfdec10 9506 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
| 15 | 14 | oveq2i 5954 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
| 16 | dfdec10 9506 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
| 17 | 13, 15, 16 | 3eqtr4i 2235 | 1 ⊢ (9 · ;11) = ;99 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 9c9 9093 ;cdc 9503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-dec 9504 |
| This theorem is referenced by: 3dvds2dec 12119 |
| Copyright terms: Public domain | W3C validator |