![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version |
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
9t11e99 | ⊢ (9 · ;11) = ;99 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 9070 | . . . 4 ⊢ 9 ∈ ℂ | |
2 | 10nn0 9465 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
3 | 2 | nn0cni 9252 | . . . . 5 ⊢ ;10 ∈ ℂ |
4 | ax-1cn 7965 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | mulcli 8024 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
6 | 1, 5, 4 | adddii 8029 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
7 | 3 | mulid1i 8021 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
8 | 7 | oveq2i 5929 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
9 | 1, 3 | mulcomi 8025 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
10 | 8, 9 | eqtri 2214 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
11 | 1 | mulid1i 8021 | . . . 4 ⊢ (9 · 1) = 9 |
12 | 10, 11 | oveq12i 5930 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
13 | 6, 12 | eqtri 2214 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
14 | dfdec10 9451 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
15 | 14 | oveq2i 5929 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
16 | dfdec10 9451 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
17 | 13, 15, 16 | 3eqtr4i 2224 | 1 ⊢ (9 · ;11) = ;99 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 9c9 9040 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: 3dvds2dec 12007 |
Copyright terms: Public domain | W3C validator |