| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version | ||
| Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 9t11e99 | ⊢ (9 · ;11) = ;99 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9154 | . . . 4 ⊢ 9 ∈ ℂ | |
| 2 | 10nn0 9551 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 3 | 2 | nn0cni 9337 | . . . . 5 ⊢ ;10 ∈ ℂ |
| 4 | ax-1cn 8048 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | mulcli 8107 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
| 6 | 1, 5, 4 | adddii 8112 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
| 7 | 3 | mulridi 8104 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
| 8 | 7 | oveq2i 5973 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
| 9 | 1, 3 | mulcomi 8108 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
| 10 | 8, 9 | eqtri 2227 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
| 11 | 1 | mulridi 8104 | . . . 4 ⊢ (9 · 1) = 9 |
| 12 | 10, 11 | oveq12i 5974 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
| 13 | 6, 12 | eqtri 2227 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
| 14 | dfdec10 9537 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
| 15 | 14 | oveq2i 5973 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
| 16 | dfdec10 9537 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
| 17 | 13, 15, 16 | 3eqtr4i 2237 | 1 ⊢ (9 · ;11) = ;99 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5962 0cc0 7955 1c1 7956 + caddc 7958 · cmul 7960 9c9 9124 ;cdc 9534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 |
| This theorem is referenced by: 3dvds2dec 12262 |
| Copyright terms: Public domain | W3C validator |