Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version |
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
9t11e99 | ⊢ (9 · ;11) = ;99 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 8915 | . . . 4 ⊢ 9 ∈ ℂ | |
2 | 10nn0 9306 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
3 | 2 | nn0cni 9096 | . . . . 5 ⊢ ;10 ∈ ℂ |
4 | ax-1cn 7819 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | mulcli 7877 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
6 | 1, 5, 4 | adddii 7882 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
7 | 3 | mulid1i 7874 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
8 | 7 | oveq2i 5832 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
9 | 1, 3 | mulcomi 7878 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
10 | 8, 9 | eqtri 2178 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
11 | 1 | mulid1i 7874 | . . . 4 ⊢ (9 · 1) = 9 |
12 | 10, 11 | oveq12i 5833 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
13 | 6, 12 | eqtri 2178 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
14 | dfdec10 9292 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
15 | 14 | oveq2i 5832 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
16 | dfdec10 9292 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
17 | 13, 15, 16 | 3eqtr4i 2188 | 1 ⊢ (9 · ;11) = ;99 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5821 0cc0 7726 1c1 7727 + caddc 7729 · cmul 7731 9c9 8885 ;cdc 9289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-sub 8042 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-5 8889 df-6 8890 df-7 8891 df-8 8892 df-9 8893 df-n0 9085 df-dec 9290 |
This theorem is referenced by: 3dvds2dec 11749 |
Copyright terms: Public domain | W3C validator |