| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version | ||
| Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 9t11e99 | ⊢ (9 · ;11) = ;99 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9194 | . . . 4 ⊢ 9 ∈ ℂ | |
| 2 | 10nn0 9591 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 3 | 2 | nn0cni 9377 | . . . . 5 ⊢ ;10 ∈ ℂ |
| 4 | ax-1cn 8088 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4 | mulcli 8147 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
| 6 | 1, 5, 4 | adddii 8152 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
| 7 | 3 | mulridi 8144 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
| 8 | 7 | oveq2i 6011 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
| 9 | 1, 3 | mulcomi 8148 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
| 10 | 8, 9 | eqtri 2250 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
| 11 | 1 | mulridi 8144 | . . . 4 ⊢ (9 · 1) = 9 |
| 12 | 10, 11 | oveq12i 6012 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
| 13 | 6, 12 | eqtri 2250 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
| 14 | dfdec10 9577 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
| 15 | 14 | oveq2i 6011 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
| 16 | dfdec10 9577 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
| 17 | 13, 15, 16 | 3eqtr4i 2260 | 1 ⊢ (9 · ;11) = ;99 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 9c9 9164 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 |
| This theorem is referenced by: 3dvds2dec 12372 |
| Copyright terms: Public domain | W3C validator |