![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version |
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
9t11e99 | ⊢ (9 · ;11) = ;99 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 9072 | . . . 4 ⊢ 9 ∈ ℂ | |
2 | 10nn0 9468 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
3 | 2 | nn0cni 9255 | . . . . 5 ⊢ ;10 ∈ ℂ |
4 | ax-1cn 7967 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | mulcli 8026 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
6 | 1, 5, 4 | adddii 8031 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
7 | 3 | mulid1i 8023 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
8 | 7 | oveq2i 5930 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
9 | 1, 3 | mulcomi 8027 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
10 | 8, 9 | eqtri 2214 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
11 | 1 | mulid1i 8023 | . . . 4 ⊢ (9 · 1) = 9 |
12 | 10, 11 | oveq12i 5931 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
13 | 6, 12 | eqtri 2214 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
14 | dfdec10 9454 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
15 | 14 | oveq2i 5930 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
16 | dfdec10 9454 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
17 | 13, 15, 16 | 3eqtr4i 2224 | 1 ⊢ (9 · ;11) = ;99 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 9c9 9042 ;cdc 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-dec 9452 |
This theorem is referenced by: 3dvds2dec 12010 |
Copyright terms: Public domain | W3C validator |