![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9t11e99 | GIF version |
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
9t11e99 | ⊢ (9 · ;11) = ;99 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9cn 9009 | . . . 4 ⊢ 9 ∈ ℂ | |
2 | 10nn0 9403 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
3 | 2 | nn0cni 9190 | . . . . 5 ⊢ ;10 ∈ ℂ |
4 | ax-1cn 7906 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4 | mulcli 7964 | . . . 4 ⊢ (;10 · 1) ∈ ℂ |
6 | 1, 5, 4 | adddii 7969 | . . 3 ⊢ (9 · ((;10 · 1) + 1)) = ((9 · (;10 · 1)) + (9 · 1)) |
7 | 3 | mulid1i 7961 | . . . . . 6 ⊢ (;10 · 1) = ;10 |
8 | 7 | oveq2i 5888 | . . . . 5 ⊢ (9 · (;10 · 1)) = (9 · ;10) |
9 | 1, 3 | mulcomi 7965 | . . . . 5 ⊢ (9 · ;10) = (;10 · 9) |
10 | 8, 9 | eqtri 2198 | . . . 4 ⊢ (9 · (;10 · 1)) = (;10 · 9) |
11 | 1 | mulid1i 7961 | . . . 4 ⊢ (9 · 1) = 9 |
12 | 10, 11 | oveq12i 5889 | . . 3 ⊢ ((9 · (;10 · 1)) + (9 · 1)) = ((;10 · 9) + 9) |
13 | 6, 12 | eqtri 2198 | . 2 ⊢ (9 · ((;10 · 1) + 1)) = ((;10 · 9) + 9) |
14 | dfdec10 9389 | . . 3 ⊢ ;11 = ((;10 · 1) + 1) | |
15 | 14 | oveq2i 5888 | . 2 ⊢ (9 · ;11) = (9 · ((;10 · 1) + 1)) |
16 | dfdec10 9389 | . 2 ⊢ ;99 = ((;10 · 9) + 9) | |
17 | 13, 15, 16 | 3eqtr4i 2208 | 1 ⊢ (9 · ;11) = ;99 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5877 0cc0 7813 1c1 7814 + caddc 7816 · cmul 7818 9c9 8979 ;cdc 9386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-dec 9387 |
This theorem is referenced by: 3dvds2dec 11873 |
Copyright terms: Public domain | W3C validator |