![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mndbn0 | GIF version |
Description: The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13011). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
Ref | Expression |
---|---|
mndbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
mndbn0 | ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2193 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | mndidcl 13011 | . 2 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 3454 | 1 ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∅c0 3446 ‘cfv 5254 Basecbs 12618 0gc0g 12867 Mndcmnd 12997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |