ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndbn0 GIF version

Theorem mndbn0 13205
Description: The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13204). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
Hypothesis
Ref Expression
mndbn0.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
mndbn0 (𝐺 ∈ Mnd → 𝐵 ≠ ∅)

Proof of Theorem mndbn0
StepHypRef Expression
1 mndbn0.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2204 . . 3 (0g𝐺) = (0g𝐺)
31, 2mndidcl 13204 . 2 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
43ne0d 3467 1 (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wne 2375  c0 3459  cfv 5270  Basecbs 12774  0gc0g 13030  Mndcmnd 13190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator