![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mndbn0 | GIF version |
Description: The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 12836). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
Ref | Expression |
---|---|
mndbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
mndbn0 | ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2177 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | mndidcl 12836 | . 2 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 3432 | 1 ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∅c0 3424 ‘cfv 5218 Basecbs 12464 0gc0g 12710 Mndcmnd 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5833 df-ov 5880 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |