ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ad GIF version

Theorem necon3ad 2399
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ad.1 (𝜑 → (𝜓𝐴 = 𝐵))
Assertion
Ref Expression
necon3ad (𝜑 → (𝐴𝐵 → ¬ 𝜓))

Proof of Theorem necon3ad
StepHypRef Expression
1 df-ne 2358 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3ad.1 . . 3 (𝜑 → (𝜓𝐴 = 𝐵))
32con3d 632 . 2 (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝜓))
41, 3biimtrid 152 1 (𝜑 → (𝐴𝐵 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1363  wne 2357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2358
This theorem is referenced by:  necon3d  2401  disjnim  4006  fodjumkvlemres  7171  nlt1pig  7354  eucalglt  12071  nprm  12137  pcprmpw2  12346  pcmpt  12355  expnprm  12365  0nnei  13949  2sqlem8a  14765  bj-charfunr  14858
  Copyright terms: Public domain W3C validator