| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3ad | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3ad.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
| 3 | 2 | con3d 632 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝜓)) |
| 4 | 1, 3 | biimtrid 152 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: necon3d 2411 disjnim 4024 fodjumkvlemres 7225 nlt1pig 7408 eucalglt 12225 nprm 12291 pcprmpw2 12502 pcmpt 12512 expnprm 12522 0nnei 14389 2sqlem8a 15363 bj-charfunr 15456 |
| Copyright terms: Public domain | W3C validator |