Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nnei | GIF version |
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.) |
Ref | Expression |
---|---|
0nnei | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnei 12751 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∅) | |
2 | ss0b 3447 | . . . . 5 ⊢ (𝑆 ⊆ ∅ ↔ 𝑆 = ∅) | |
3 | 1, 2 | sylib 121 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 = ∅) |
4 | 3 | ex 114 | . . 3 ⊢ (𝐽 ∈ Top → (∅ ∈ ((nei‘𝐽)‘𝑆) → 𝑆 = ∅)) |
5 | 4 | necon3ad 2377 | . 2 ⊢ (𝐽 ∈ Top → (𝑆 ≠ ∅ → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))) |
6 | 5 | imp 123 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ≠ wne 2335 ⊆ wss 3115 ∅c0 3408 ‘cfv 5187 Topctop 12595 neicnei 12738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-top 12596 df-nei 12739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |