ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nnei GIF version

Theorem 0nnei 14130
Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
Assertion
Ref Expression
0nnei ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem 0nnei
StepHypRef Expression
1 ssnei 14128 . . . . 5 ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∅)
2 ss0b 3477 . . . . 5 (𝑆 ⊆ ∅ ↔ 𝑆 = ∅)
31, 2sylib 122 . . . 4 ((𝐽 ∈ Top ∧ ∅ ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 = ∅)
43ex 115 . . 3 (𝐽 ∈ Top → (∅ ∈ ((nei‘𝐽)‘𝑆) → 𝑆 = ∅))
54necon3ad 2402 . 2 (𝐽 ∈ Top → (𝑆 ≠ ∅ → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)))
65imp 124 1 ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2160  wne 2360  wss 3144  c0 3437  cfv 5235  Topctop 13974  neicnei 14115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-top 13975  df-nei 14116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator