Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nprm GIF version

Theorem nprm 11838
 Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
nprm ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)

Proof of Theorem nprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9358 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
21adantr 274 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
32zred 9196 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
4 eluz2b2 9423 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
54simprbi 273 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
65adantl 275 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
7 eluzelz 9358 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
87adantl 275 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
98zred 9196 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ)
10 eluz2nn 9387 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1110adantr 274 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
1211nngt0d 8787 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < 𝐴)
13 ltmulgt11 8645 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
143, 9, 12, 13syl3anc 1217 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
156, 14mpbid 146 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 < (𝐴 · 𝐵))
163, 15ltned 7900 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ≠ (𝐴 · 𝐵))
17 dvdsmul1 11549 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
181, 7, 17syl2an 287 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∥ (𝐴 · 𝐵))
19 isprm4 11834 . . . . . . 7 ((𝐴 · 𝐵) ∈ ℙ ↔ ((𝐴 · 𝐵) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵))))
2019simprbi 273 . . . . . 6 ((𝐴 · 𝐵) ∈ ℙ → ∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)))
21 breq1 3939 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∥ (𝐴 · 𝐵) ↔ 𝐴 ∥ (𝐴 · 𝐵)))
22 eqeq1 2147 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝐴 · 𝐵) ↔ 𝐴 = (𝐴 · 𝐵)))
2321, 22imbi12d 233 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) ↔ (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2423rspcv 2788 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2520, 24syl5 32 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2625adantr 274 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2718, 26mpid 42 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 · 𝐵) ∈ ℙ → 𝐴 = (𝐴 · 𝐵)))
2827necon3ad 2351 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴 ≠ (𝐴 · 𝐵) → ¬ (𝐴 · 𝐵) ∈ ℙ))
2916, 28mpd 13 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481   ≠ wne 2309  ∀wral 2417   class class class wbr 3936  ‘cfv 5130  (class class class)co 5781  ℝcr 7642  0cc0 7643  1c1 7644   · cmul 7648   < clt 7823  ℕcn 8743  2c2 8794  ℤcz 9077  ℤ≥cuz 9349   ∥ cdvds 11527  ℙcprime 11822 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-1o 6320  df-2o 6321  df-er 6436  df-en 6642  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-dvds 11528  df-prm 11823 This theorem is referenced by:  nprmi  11839  dvdsnprmd  11840  sqnprm  11850
 Copyright terms: Public domain W3C validator