ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nprm GIF version

Theorem nprm 12055
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
nprm ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)

Proof of Theorem nprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9475 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
21adantr 274 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
32zred 9313 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
4 eluz2b2 9541 . . . . . 6 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
54simprbi 273 . . . . 5 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
65adantl 275 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 1 < 𝐵)
7 eluzelz 9475 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
87adantl 275 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℤ)
98zred 9313 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐵 ∈ ℝ)
10 eluz2nn 9504 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1110adantr 274 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
1211nngt0d 8901 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 0 < 𝐴)
13 ltmulgt11 8759 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
143, 9, 12, 13syl3anc 1228 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
156, 14mpbid 146 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 < (𝐴 · 𝐵))
163, 15ltned 8012 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ≠ (𝐴 · 𝐵))
17 dvdsmul1 11753 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
181, 7, 17syl2an 287 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → 𝐴 ∥ (𝐴 · 𝐵))
19 isprm4 12051 . . . . . . 7 ((𝐴 · 𝐵) ∈ ℙ ↔ ((𝐴 · 𝐵) ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵))))
2019simprbi 273 . . . . . 6 ((𝐴 · 𝐵) ∈ ℙ → ∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)))
21 breq1 3985 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∥ (𝐴 · 𝐵) ↔ 𝐴 ∥ (𝐴 · 𝐵)))
22 eqeq1 2172 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝐴 · 𝐵) ↔ 𝐴 = (𝐴 · 𝐵)))
2321, 22imbi12d 233 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) ↔ (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2423rspcv 2826 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (∀𝑥 ∈ (ℤ‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2520, 24syl5 32 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2625adantr 274 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵))))
2718, 26mpid 42 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ((𝐴 · 𝐵) ∈ ℙ → 𝐴 = (𝐴 · 𝐵)))
2827necon3ad 2378 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → (𝐴 ≠ (𝐴 · 𝐵) → ¬ (𝐴 · 𝐵) ∈ ℙ))
2916, 28mpd 13 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wne 2336  wral 2444   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   · cmul 7758   < clt 7933  cn 8857  2c2 8908  cz 9191  cuz 9466  cdvds 11727  cprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-prm 12040
This theorem is referenced by:  nprmi  12056  dvdsnprmd  12057  sqnprm  12068
  Copyright terms: Public domain W3C validator