ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt GIF version

Theorem pcmpt 12295
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
Assertion
Ref Expression
pcmpt (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt
Dummy variables 𝑘 𝑝 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.3 . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5496 . . . . . 6 (𝑝 = 1 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘1))
32oveq2d 5869 . . . . 5 (𝑝 = 1 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘1)))
4 breq2 3993 . . . . . 6 (𝑝 = 1 → (𝑃𝑝𝑃 ≤ 1))
54ifbid 3547 . . . . 5 (𝑝 = 1 → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ 1, 𝐵, 0))
63, 5eqeq12d 2185 . . . 4 (𝑝 = 1 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)))
76imbi2d 229 . . 3 (𝑝 = 1 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))))
8 fveq2 5496 . . . . . 6 (𝑝 = 𝑘 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑘))
98oveq2d 5869 . . . . 5 (𝑝 = 𝑘 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
10 breq2 3993 . . . . . 6 (𝑝 = 𝑘 → (𝑃𝑝𝑃𝑘))
1110ifbid 3547 . . . . 5 (𝑝 = 𝑘 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
129, 11eqeq12d 2185 . . . 4 (𝑝 = 𝑘 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
1312imbi2d 229 . . 3 (𝑝 = 𝑘 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0))))
14 fveq2 5496 . . . . . 6 (𝑝 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘(𝑘 + 1)))
1514oveq2d 5869 . . . . 5 (𝑝 = (𝑘 + 1) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))))
16 breq2 3993 . . . . . 6 (𝑝 = (𝑘 + 1) → (𝑃𝑝𝑃 ≤ (𝑘 + 1)))
1716ifbid 3547 . . . . 5 (𝑝 = (𝑘 + 1) → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))
1815, 17eqeq12d 2185 . . . 4 (𝑝 = (𝑘 + 1) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
1918imbi2d 229 . . 3 (𝑝 = (𝑘 + 1) → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
20 fveq2 5496 . . . . . 6 (𝑝 = 𝑁 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑁))
2120oveq2d 5869 . . . . 5 (𝑝 = 𝑁 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))
22 breq2 3993 . . . . . 6 (𝑝 = 𝑁 → (𝑃𝑝𝑃𝑁))
2322ifbid 3547 . . . . 5 (𝑝 = 𝑁 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑁, 𝐵, 0))
2421, 23eqeq12d 2185 . . . 4 (𝑝 = 𝑁 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2524imbi2d 229 . . 3 (𝑝 = 𝑁 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))))
26 pcmpt.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
27 pc1 12259 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2826, 27syl 14 . . . 4 (𝜑 → (𝑃 pCnt 1) = 0)
29 1zzd 9239 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
30 elnnuz 9523 . . . . . . . 8 (𝑖 ∈ ℕ ↔ 𝑖 ∈ (ℤ‘1))
31 simpr 109 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
3231adantr 274 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 ∈ ℕ)
33 simpr 109 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 ∈ ℙ)
34 pcmpt.2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
3534ad2antrr 485 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
36 nfcsb1v 3082 . . . . . . . . . . . . . . 15 𝑛𝑖 / 𝑛𝐴
3736nfel1 2323 . . . . . . . . . . . . . 14 𝑛𝑖 / 𝑛𝐴 ∈ ℕ0
38 csbeq1a 3058 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
3938eleq1d 2239 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝐴 ∈ ℕ0𝑖 / 𝑛𝐴 ∈ ℕ0))
4037, 39rspc 2828 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝑖 / 𝑛𝐴 ∈ ℕ0))
4133, 35, 40sylc 62 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 / 𝑛𝐴 ∈ ℕ0)
4232, 41nnexpcld 10631 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → (𝑖𝑖 / 𝑛𝐴) ∈ ℕ)
43 1nn 8889 . . . . . . . . . . . 12 1 ∈ ℕ
4443a1i 9 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ ¬ 𝑖 ∈ ℙ) → 1 ∈ ℕ)
45 prmdc 12084 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → DECID 𝑖 ∈ ℙ)
4645adantl 275 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → DECID 𝑖 ∈ ℙ)
4742, 44, 46ifcldadc 3555 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1) ∈ ℕ)
48 nfcv 2312 . . . . . . . . . . 11 𝑛𝑖
4948nfel1 2323 . . . . . . . . . . . 12 𝑛 𝑖 ∈ ℙ
50 nfcv 2312 . . . . . . . . . . . . 13 𝑛
5148, 50, 36nfov 5883 . . . . . . . . . . . 12 𝑛(𝑖𝑖 / 𝑛𝐴)
52 nfcv 2312 . . . . . . . . . . . 12 𝑛1
5349, 51, 52nfif 3554 . . . . . . . . . . 11 𝑛if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1)
54 eleq1 2233 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛 ∈ ℙ ↔ 𝑖 ∈ ℙ))
55 id 19 . . . . . . . . . . . . 13 (𝑛 = 𝑖𝑛 = 𝑖)
5655, 38oveq12d 5871 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛𝐴) = (𝑖𝑖 / 𝑛𝐴))
5754, 56ifbieq1d 3548 . . . . . . . . . . 11 (𝑛 = 𝑖 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
58 pcmpt.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
5948, 53, 57, 58fvmptf 5588 . . . . . . . . . 10 ((𝑖 ∈ ℕ ∧ if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1) ∈ ℕ) → (𝐹𝑖) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
6031, 47, 59syl2anc 409 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
6160, 47eqeltrd 2247 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℕ)
6230, 61sylan2br 286 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘1)) → (𝐹𝑖) ∈ ℕ)
63 nnmulcl 8899 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑖 · 𝑗) ∈ ℕ)
6463adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
6529, 62, 64seq3-1 10416 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘1) = (𝐹‘1))
66 1nprm 12068 . . . . . . . . . 10 ¬ 1 ∈ ℙ
67 eleq1 2233 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
6866, 67mtbiri 670 . . . . . . . . 9 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
6968iffalsed 3536 . . . . . . . 8 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
70 1ex 7915 . . . . . . . 8 1 ∈ V
7169, 58, 70fvmpt 5573 . . . . . . 7 (1 ∈ ℕ → (𝐹‘1) = 1)
7243, 71ax-mp 5 . . . . . 6 (𝐹‘1) = 1
7365, 72eqtrdi 2219 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘1) = 1)
7473oveq2d 5869 . . . 4 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = (𝑃 pCnt 1))
75 prmgt1 12086 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
76 1z 9238 . . . . . . . 8 1 ∈ ℤ
77 prmz 12065 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
78 zltnle 9258 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
7976, 77, 78sylancr 412 . . . . . . 7 (𝑃 ∈ ℙ → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
8075, 79mpbid 146 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ≤ 1)
8180iffalsed 3536 . . . . 5 (𝑃 ∈ ℙ → if(𝑃 ≤ 1, 𝐵, 0) = 0)
8226, 81syl 14 . . . 4 (𝜑 → if(𝑃 ≤ 1, 𝐵, 0) = 0)
8328, 74, 823eqtr4d 2213 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))
8426adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℙ)
8558, 34pcmptcl 12294 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
8685simpld 111 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
87 peano2nn 8890 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
88 ffvelrn 5629 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
8986, 87, 88syl2an 287 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
9089adantrr 476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
9184, 90pccld 12254 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℕ0)
9291nn0cnd 9190 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℂ)
9392addid2d 8069 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (𝑃 pCnt (𝐹‘(𝑘 + 1))))
9487ad2antrl 487 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℕ)
9587ad2antlr 486 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
96 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
9734ad2antrr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
98 nfcsb1v 3082 . . . . . . . . . . . . . . . . . . 19 𝑛(𝑘 + 1) / 𝑛𝐴
9998nfel1 2323 . . . . . . . . . . . . . . . . . 18 𝑛(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0
100 csbeq1a 3058 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑛𝐴)
101100eleq1d 2239 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
10299, 101rspc 2828 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
10396, 97, 102sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
10495, 103nnexpcld 10631 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) ∈ ℕ)
10543a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → 1 ∈ ℕ)
10687adantl 275 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
107 prmdc 12084 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → DECID (𝑘 + 1) ∈ ℙ)
108106, 107syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → DECID (𝑘 + 1) ∈ ℙ)
109104, 105, 108ifcldadc 3555 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
110109adantrr 476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
111 nfcv 2312 . . . . . . . . . . . . . 14 𝑛(𝑘 + 1)
112 nfv 1521 . . . . . . . . . . . . . . 15 𝑛(𝑘 + 1) ∈ ℙ
113111, 50, 98nfov 5883 . . . . . . . . . . . . . . 15 𝑛((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)
114112, 113, 52nfif 3554 . . . . . . . . . . . . . 14 𝑛if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1)
115 eleq1 2233 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
116 id 19 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
117116, 100oveq12d 5871 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝑛𝐴) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
118115, 117ifbieq1d 3548 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
119111, 114, 118, 58fvmptf 5588 . . . . . . . . . . . . 13 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
12094, 110, 119syl2anc 409 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
121 simprr 527 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) = 𝑃)
122121, 84eqeltrd 2247 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℙ)
123122iftrued 3533 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
124121csbeq1d 3056 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝑃 / 𝑛𝐴)
125 nfcvd 2313 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑛𝐵)
126 pcmpt.5 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑃𝐴 = 𝐵)
127125, 126csbiegf 3092 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 / 𝑛𝐴 = 𝐵)
12884, 127syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 / 𝑛𝐴 = 𝐵)
129124, 128eqtrd 2203 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝐵)
130121, 129oveq12d 5871 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) = (𝑃𝐵))
131120, 123, 1303eqtrd 2207 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = (𝑃𝐵))
132131oveq2d 5869 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt (𝑃𝐵)))
133126eleq1d 2239 . . . . . . . . . . . . . 14 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
134133rspcv 2830 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
13526, 34, 134sylc 62 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ0)
136135adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝐵 ∈ ℕ0)
137 pcidlem 12276 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
13826, 136, 137syl2an2r 590 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
13993, 132, 1383eqtrd 2207 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)
140 oveq1 5860 . . . . . . . . . 10 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
141140eqeq1d 2179 . . . . . . . . 9 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → (((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵 ↔ (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
142139, 141syl5ibrcom 156 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
143 nnre 8885 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
144143ltp1d 8846 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 < (𝑘 + 1))
145 nnz 9231 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
14687nnzd 9333 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℤ)
147 zltnle 9258 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
148145, 146, 147syl2anc 409 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
149144, 148mpbid 146 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ¬ (𝑘 + 1) ≤ 𝑘)
150149ad2antrl 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ (𝑘 + 1) ≤ 𝑘)
151121breq1d 3999 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1) ≤ 𝑘𝑃𝑘))
152150, 151mtbid 667 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ 𝑃𝑘)
153152iffalsed 3536 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃𝑘, 𝐵, 0) = 0)
154153eqeq2d 2182 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0))
155 simpr 109 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
156 nnuz 9522 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
157155, 156eleqtrdi 2263 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
15862adantlr 474 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘1)) → (𝐹𝑖) ∈ ℕ)
15963adantl 275 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
160157, 158, 159seq3p1 10418 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
161160oveq2d 5869 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))))
16226adantr 274 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
16385simprd 113 . . . . . . . . . . . . . 14 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
164163ffvelrnda 5631 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
165 nnz 9231 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℤ)
166 nnne0 8906 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ≠ 0)
167165, 166jca 304 . . . . . . . . . . . . 13 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
168164, 167syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
169 nnz 9231 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℤ)
170 nnne0 8906 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ≠ 0)
171169, 170jca 304 . . . . . . . . . . . . 13 ((𝐹‘(𝑘 + 1)) ∈ ℕ → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
17289, 171syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
173 pcmul 12255 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0) ∧ ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
174162, 168, 172, 173syl3anc 1233 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
175161, 174eqtrd 2203 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
176175adantrr 476 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
177 prmnn 12064 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
17826, 177syl 14 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
179178nnred 8891 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ)
180179adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℝ)
181180leidd 8433 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃𝑃)
182181, 121breqtrrd 4017 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ≤ (𝑘 + 1))
183182iftrued 3533 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = 𝐵)
184176, 183eqeq12d 2185 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
185142, 154, 1843imtr4d 202 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
186185expr 373 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
187175adantrr 476 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
188 simplrr 531 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ≠ 𝑃)
189188necomd 2426 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ≠ (𝑘 + 1))
19026ad2antrr 485 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ∈ ℙ)
191 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
19234ad2antrr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
193191, 192, 102sylc 62 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
194 prmdvdsexpr 12104 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑘 + 1) ∈ ℙ ∧ (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
195190, 191, 193, 194syl3anc 1233 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
196195necon3ad 2382 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ≠ (𝑘 + 1) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
197189, 196mpd 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
19887ad2antrl 487 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℕ)
199109adantrr 476 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
200198, 199, 119syl2anc 409 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
201 iftrue 3531 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
202200, 201sylan9eq 2223 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
203202breq2d 4001 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ (𝐹‘(𝑘 + 1)) ↔ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
204197, 203mtbird 668 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1)))
20586, 198, 88syl2an2r 590 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
206205adantr 274 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
207 pceq0 12275 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝐹‘(𝑘 + 1)) ∈ ℕ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
208190, 206, 207syl2anc 409 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
209204, 208mpbird 166 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
210 iffalse 3534 . . . . . . . . . . . . . . 15 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = 1)
211200, 210sylan9eq 2223 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
212211oveq2d 5869 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt 1))
21328ad2antrr 485 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt 1) = 0)
214212, 213eqtrd 2203 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
215 exmiddc 831 . . . . . . . . . . . . 13 (DECID (𝑘 + 1) ∈ ℙ → ((𝑘 + 1) ∈ ℙ ∨ ¬ (𝑘 + 1) ∈ ℙ))
216198, 107, 2153syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑘 + 1) ∈ ℙ ∨ ¬ (𝑘 + 1) ∈ ℙ))
217209, 214, 216mpjaodan 793 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
218217oveq2d 5869 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0))
21926adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℙ)
220164adantrr 476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
221219, 220pccld 12254 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℕ0)
222221nn0cnd 9190 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℂ)
223222addid1d 8068 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
224187, 218, 2233eqtrd 2207 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
225219, 77syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℤ)
226146ad2antrl 487 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℤ)
227 zltlen 9290 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
228225, 226, 227syl2anc 409 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
229 simprl 526 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑘 ∈ ℕ)
230 nnleltp1 9271 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘𝑃 < (𝑘 + 1)))
231178, 229, 230syl2an2r 590 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃𝑘𝑃 < (𝑘 + 1)))
232 simprr 527 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ≠ 𝑃)
233232biantrud 302 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
234228, 231, 2333bitr4rd 220 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ 𝑃𝑘))
235234ifbid 3547 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
236224, 235eqeq12d 2185 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
237236biimprd 157 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
238237expr 373 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) ≠ 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
239106nnzd 9333 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
240162, 77syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℤ)
241 zdceq 9287 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID (𝑘 + 1) = 𝑃)
242239, 240, 241syl2anc 409 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → DECID (𝑘 + 1) = 𝑃)
243 dcne 2351 . . . . . . 7 (DECID (𝑘 + 1) = 𝑃 ↔ ((𝑘 + 1) = 𝑃 ∨ (𝑘 + 1) ≠ 𝑃))
244242, 243sylib 121 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 ∨ (𝑘 + 1) ≠ 𝑃))
245186, 238, 244mpjaod 713 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
246245expcom 115 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
247246a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)) → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
2487, 13, 19, 25, 83, 247nnind 8894 . 2 (𝑁 ∈ ℕ → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2491, 248mpcom 36 1 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  wral 2448  csb 3049  ifcif 3526   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cn 8878  0cn0 9135  cz 9212  cuz 9487  seqcseq 10401  cexp 10475  cdvds 11749  cprime 12061   pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  pcmpt2  12296  pcprod  12298  1arithlem4  12318
  Copyright terms: Public domain W3C validator