ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt GIF version

Theorem pcmpt 12537
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
Assertion
Ref Expression
pcmpt (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt
Dummy variables 𝑘 𝑝 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.3 . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5561 . . . . . 6 (𝑝 = 1 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘1))
32oveq2d 5941 . . . . 5 (𝑝 = 1 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘1)))
4 breq2 4038 . . . . . 6 (𝑝 = 1 → (𝑃𝑝𝑃 ≤ 1))
54ifbid 3583 . . . . 5 (𝑝 = 1 → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ 1, 𝐵, 0))
63, 5eqeq12d 2211 . . . 4 (𝑝 = 1 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)))
76imbi2d 230 . . 3 (𝑝 = 1 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))))
8 fveq2 5561 . . . . . 6 (𝑝 = 𝑘 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑘))
98oveq2d 5941 . . . . 5 (𝑝 = 𝑘 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
10 breq2 4038 . . . . . 6 (𝑝 = 𝑘 → (𝑃𝑝𝑃𝑘))
1110ifbid 3583 . . . . 5 (𝑝 = 𝑘 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
129, 11eqeq12d 2211 . . . 4 (𝑝 = 𝑘 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
1312imbi2d 230 . . 3 (𝑝 = 𝑘 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0))))
14 fveq2 5561 . . . . . 6 (𝑝 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘(𝑘 + 1)))
1514oveq2d 5941 . . . . 5 (𝑝 = (𝑘 + 1) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))))
16 breq2 4038 . . . . . 6 (𝑝 = (𝑘 + 1) → (𝑃𝑝𝑃 ≤ (𝑘 + 1)))
1716ifbid 3583 . . . . 5 (𝑝 = (𝑘 + 1) → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))
1815, 17eqeq12d 2211 . . . 4 (𝑝 = (𝑘 + 1) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
1918imbi2d 230 . . 3 (𝑝 = (𝑘 + 1) → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
20 fveq2 5561 . . . . . 6 (𝑝 = 𝑁 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑁))
2120oveq2d 5941 . . . . 5 (𝑝 = 𝑁 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))
22 breq2 4038 . . . . . 6 (𝑝 = 𝑁 → (𝑃𝑝𝑃𝑁))
2322ifbid 3583 . . . . 5 (𝑝 = 𝑁 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑁, 𝐵, 0))
2421, 23eqeq12d 2211 . . . 4 (𝑝 = 𝑁 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2524imbi2d 230 . . 3 (𝑝 = 𝑁 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))))
26 pcmpt.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
27 pc1 12499 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2826, 27syl 14 . . . 4 (𝜑 → (𝑃 pCnt 1) = 0)
29 1zzd 9370 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
30 elnnuz 9655 . . . . . . . 8 (𝑖 ∈ ℕ ↔ 𝑖 ∈ (ℤ‘1))
31 simpr 110 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
3231adantr 276 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 ∈ ℕ)
33 simpr 110 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 ∈ ℙ)
34 pcmpt.2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
3534ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
36 nfcsb1v 3117 . . . . . . . . . . . . . . 15 𝑛𝑖 / 𝑛𝐴
3736nfel1 2350 . . . . . . . . . . . . . 14 𝑛𝑖 / 𝑛𝐴 ∈ ℕ0
38 csbeq1a 3093 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
3938eleq1d 2265 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝐴 ∈ ℕ0𝑖 / 𝑛𝐴 ∈ ℕ0))
4037, 39rspc 2862 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝑖 / 𝑛𝐴 ∈ ℕ0))
4133, 35, 40sylc 62 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 / 𝑛𝐴 ∈ ℕ0)
4232, 41nnexpcld 10804 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → (𝑖𝑖 / 𝑛𝐴) ∈ ℕ)
43 1nn 9018 . . . . . . . . . . . 12 1 ∈ ℕ
4443a1i 9 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ ¬ 𝑖 ∈ ℙ) → 1 ∈ ℕ)
45 prmdc 12323 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → DECID 𝑖 ∈ ℙ)
4645adantl 277 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → DECID 𝑖 ∈ ℙ)
4742, 44, 46ifcldadc 3591 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1) ∈ ℕ)
48 nfcv 2339 . . . . . . . . . . 11 𝑛𝑖
4948nfel1 2350 . . . . . . . . . . . 12 𝑛 𝑖 ∈ ℙ
50 nfcv 2339 . . . . . . . . . . . . 13 𝑛
5148, 50, 36nfov 5955 . . . . . . . . . . . 12 𝑛(𝑖𝑖 / 𝑛𝐴)
52 nfcv 2339 . . . . . . . . . . . 12 𝑛1
5349, 51, 52nfif 3590 . . . . . . . . . . 11 𝑛if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1)
54 eleq1 2259 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛 ∈ ℙ ↔ 𝑖 ∈ ℙ))
55 id 19 . . . . . . . . . . . . 13 (𝑛 = 𝑖𝑛 = 𝑖)
5655, 38oveq12d 5943 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛𝐴) = (𝑖𝑖 / 𝑛𝐴))
5754, 56ifbieq1d 3584 . . . . . . . . . . 11 (𝑛 = 𝑖 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
58 pcmpt.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
5948, 53, 57, 58fvmptf 5657 . . . . . . . . . 10 ((𝑖 ∈ ℕ ∧ if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1) ∈ ℕ) → (𝐹𝑖) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
6031, 47, 59syl2anc 411 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
6160, 47eqeltrd 2273 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℕ)
6230, 61sylan2br 288 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘1)) → (𝐹𝑖) ∈ ℕ)
63 nnmulcl 9028 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑖 · 𝑗) ∈ ℕ)
6463adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
6529, 62, 64seq3-1 10571 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘1) = (𝐹‘1))
66 1nprm 12307 . . . . . . . . . 10 ¬ 1 ∈ ℙ
67 eleq1 2259 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
6866, 67mtbiri 676 . . . . . . . . 9 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
6968iffalsed 3572 . . . . . . . 8 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
70 1ex 8038 . . . . . . . 8 1 ∈ V
7169, 58, 70fvmpt 5641 . . . . . . 7 (1 ∈ ℕ → (𝐹‘1) = 1)
7243, 71ax-mp 5 . . . . . 6 (𝐹‘1) = 1
7365, 72eqtrdi 2245 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘1) = 1)
7473oveq2d 5941 . . . 4 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = (𝑃 pCnt 1))
75 prmgt1 12325 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
76 1z 9369 . . . . . . . 8 1 ∈ ℤ
77 prmz 12304 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
78 zltnle 9389 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
7976, 77, 78sylancr 414 . . . . . . 7 (𝑃 ∈ ℙ → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
8075, 79mpbid 147 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ≤ 1)
8180iffalsed 3572 . . . . 5 (𝑃 ∈ ℙ → if(𝑃 ≤ 1, 𝐵, 0) = 0)
8226, 81syl 14 . . . 4 (𝜑 → if(𝑃 ≤ 1, 𝐵, 0) = 0)
8328, 74, 823eqtr4d 2239 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))
8426adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℙ)
8558, 34pcmptcl 12536 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
8685simpld 112 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
87 peano2nn 9019 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
88 ffvelcdm 5698 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
8986, 87, 88syl2an 289 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
9089adantrr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
9184, 90pccld 12494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℕ0)
9291nn0cnd 9321 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℂ)
9392addlidd 8193 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (𝑃 pCnt (𝐹‘(𝑘 + 1))))
9487ad2antrl 490 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℕ)
9587ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
96 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
9734ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
98 nfcsb1v 3117 . . . . . . . . . . . . . . . . . . 19 𝑛(𝑘 + 1) / 𝑛𝐴
9998nfel1 2350 . . . . . . . . . . . . . . . . . 18 𝑛(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0
100 csbeq1a 3093 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑛𝐴)
101100eleq1d 2265 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
10299, 101rspc 2862 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
10396, 97, 102sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
10495, 103nnexpcld 10804 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) ∈ ℕ)
10543a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → 1 ∈ ℕ)
10687adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
107 prmdc 12323 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → DECID (𝑘 + 1) ∈ ℙ)
108106, 107syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → DECID (𝑘 + 1) ∈ ℙ)
109104, 105, 108ifcldadc 3591 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
110109adantrr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
111 nfcv 2339 . . . . . . . . . . . . . 14 𝑛(𝑘 + 1)
112 nfv 1542 . . . . . . . . . . . . . . 15 𝑛(𝑘 + 1) ∈ ℙ
113111, 50, 98nfov 5955 . . . . . . . . . . . . . . 15 𝑛((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)
114112, 113, 52nfif 3590 . . . . . . . . . . . . . 14 𝑛if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1)
115 eleq1 2259 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
116 id 19 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
117116, 100oveq12d 5943 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝑛𝐴) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
118115, 117ifbieq1d 3584 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
119111, 114, 118, 58fvmptf 5657 . . . . . . . . . . . . 13 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
12094, 110, 119syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
121 simprr 531 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) = 𝑃)
122121, 84eqeltrd 2273 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℙ)
123122iftrued 3569 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
124121csbeq1d 3091 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝑃 / 𝑛𝐴)
125 nfcvd 2340 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑛𝐵)
126 pcmpt.5 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑃𝐴 = 𝐵)
127125, 126csbiegf 3128 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 / 𝑛𝐴 = 𝐵)
12884, 127syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 / 𝑛𝐴 = 𝐵)
129124, 128eqtrd 2229 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝐵)
130121, 129oveq12d 5943 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) = (𝑃𝐵))
131120, 123, 1303eqtrd 2233 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = (𝑃𝐵))
132131oveq2d 5941 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt (𝑃𝐵)))
133126eleq1d 2265 . . . . . . . . . . . . . 14 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
134133rspcv 2864 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
13526, 34, 134sylc 62 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ0)
136135adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝐵 ∈ ℕ0)
137 pcidlem 12517 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
13826, 136, 137syl2an2r 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
13993, 132, 1383eqtrd 2233 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)
140 oveq1 5932 . . . . . . . . . 10 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
141140eqeq1d 2205 . . . . . . . . 9 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → (((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵 ↔ (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
142139, 141syl5ibrcom 157 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
143 nnre 9014 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
144143ltp1d 8974 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 < (𝑘 + 1))
145 nnz 9362 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
14687nnzd 9464 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℤ)
147 zltnle 9389 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
148145, 146, 147syl2anc 411 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
149144, 148mpbid 147 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ¬ (𝑘 + 1) ≤ 𝑘)
150149ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ (𝑘 + 1) ≤ 𝑘)
151121breq1d 4044 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1) ≤ 𝑘𝑃𝑘))
152150, 151mtbid 673 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ 𝑃𝑘)
153152iffalsed 3572 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃𝑘, 𝐵, 0) = 0)
154153eqeq2d 2208 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0))
155 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
156 nnuz 9654 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
157155, 156eleqtrdi 2289 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
15862adantlr 477 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘1)) → (𝐹𝑖) ∈ ℕ)
15963adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
160157, 158, 159seq3p1 10574 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
161160oveq2d 5941 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))))
16226adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
16385simprd 114 . . . . . . . . . . . . . 14 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
164163ffvelcdmda 5700 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
165 nnz 9362 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℤ)
166 nnne0 9035 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ≠ 0)
167165, 166jca 306 . . . . . . . . . . . . 13 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
168164, 167syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
169 nnz 9362 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℤ)
170 nnne0 9035 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ≠ 0)
171169, 170jca 306 . . . . . . . . . . . . 13 ((𝐹‘(𝑘 + 1)) ∈ ℕ → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
17289, 171syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
173 pcmul 12495 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0) ∧ ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
174162, 168, 172, 173syl3anc 1249 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
175161, 174eqtrd 2229 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
176175adantrr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
177 prmnn 12303 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
17826, 177syl 14 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
179178nnred 9020 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ)
180179adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℝ)
181180leidd 8558 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃𝑃)
182181, 121breqtrrd 4062 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ≤ (𝑘 + 1))
183182iftrued 3569 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = 𝐵)
184176, 183eqeq12d 2211 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
185142, 154, 1843imtr4d 203 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
186185expr 375 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
187175adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
188 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ≠ 𝑃)
189188necomd 2453 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ≠ (𝑘 + 1))
19026ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ∈ ℙ)
191 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
19234ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
193191, 192, 102sylc 62 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
194 prmdvdsexpr 12343 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑘 + 1) ∈ ℙ ∧ (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
195190, 191, 193, 194syl3anc 1249 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
196195necon3ad 2409 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ≠ (𝑘 + 1) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
197189, 196mpd 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
19887ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℕ)
199109adantrr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
200198, 199, 119syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
201 iftrue 3567 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
202200, 201sylan9eq 2249 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
203202breq2d 4046 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ (𝐹‘(𝑘 + 1)) ↔ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
204197, 203mtbird 674 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1)))
20586, 198, 88syl2an2r 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
206205adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
207 pceq0 12516 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝐹‘(𝑘 + 1)) ∈ ℕ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
208190, 206, 207syl2anc 411 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
209204, 208mpbird 167 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
210 iffalse 3570 . . . . . . . . . . . . . . 15 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = 1)
211200, 210sylan9eq 2249 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
212211oveq2d 5941 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt 1))
21328ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt 1) = 0)
214212, 213eqtrd 2229 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
215 exmiddc 837 . . . . . . . . . . . . 13 (DECID (𝑘 + 1) ∈ ℙ → ((𝑘 + 1) ∈ ℙ ∨ ¬ (𝑘 + 1) ∈ ℙ))
216198, 107, 2153syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑘 + 1) ∈ ℙ ∨ ¬ (𝑘 + 1) ∈ ℙ))
217209, 214, 216mpjaodan 799 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
218217oveq2d 5941 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0))
21926adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℙ)
220164adantrr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
221219, 220pccld 12494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℕ0)
222221nn0cnd 9321 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℂ)
223222addridd 8192 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
224187, 218, 2233eqtrd 2233 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
225219, 77syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℤ)
226146ad2antrl 490 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℤ)
227 zltlen 9421 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
228225, 226, 227syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
229 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑘 ∈ ℕ)
230 nnleltp1 9402 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘𝑃 < (𝑘 + 1)))
231178, 229, 230syl2an2r 595 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃𝑘𝑃 < (𝑘 + 1)))
232 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ≠ 𝑃)
233232biantrud 304 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
234228, 231, 2333bitr4rd 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ 𝑃𝑘))
235234ifbid 3583 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
236224, 235eqeq12d 2211 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
237236biimprd 158 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
238237expr 375 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) ≠ 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
239106nnzd 9464 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
240162, 77syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℤ)
241 zdceq 9418 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID (𝑘 + 1) = 𝑃)
242239, 240, 241syl2anc 411 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → DECID (𝑘 + 1) = 𝑃)
243 dcne 2378 . . . . . . 7 (DECID (𝑘 + 1) = 𝑃 ↔ ((𝑘 + 1) = 𝑃 ∨ (𝑘 + 1) ≠ 𝑃))
244242, 243sylib 122 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 ∨ (𝑘 + 1) ≠ 𝑃))
245186, 238, 244mpjaod 719 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
246245expcom 116 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
247246a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)) → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
2487, 13, 19, 25, 83, 247nnind 9023 . 2 (𝑁 ∈ ℕ → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2491, 248mpcom 36 1 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  csb 3084  ifcif 3562   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cn 9007  0cn0 9266  cz 9343  cuz 9618  seqcseq 10556  cexp 10647  cdvds 11969  cprime 12300   pCnt cpc 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301  df-pc 12479
This theorem is referenced by:  pcmpt2  12538  pcprod  12540  1arithlem4  12560
  Copyright terms: Public domain W3C validator