ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmpt GIF version

Theorem pcmpt 12832
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
Assertion
Ref Expression
pcmpt (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt
Dummy variables 𝑘 𝑝 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.3 . 2 (𝜑𝑁 ∈ ℕ)
2 fveq2 5603 . . . . . 6 (𝑝 = 1 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘1))
32oveq2d 5990 . . . . 5 (𝑝 = 1 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘1)))
4 breq2 4066 . . . . . 6 (𝑝 = 1 → (𝑃𝑝𝑃 ≤ 1))
54ifbid 3604 . . . . 5 (𝑝 = 1 → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ 1, 𝐵, 0))
63, 5eqeq12d 2224 . . . 4 (𝑝 = 1 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0)))
76imbi2d 230 . . 3 (𝑝 = 1 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))))
8 fveq2 5603 . . . . . 6 (𝑝 = 𝑘 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑘))
98oveq2d 5990 . . . . 5 (𝑝 = 𝑘 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
10 breq2 4066 . . . . . 6 (𝑝 = 𝑘 → (𝑃𝑝𝑃𝑘))
1110ifbid 3604 . . . . 5 (𝑝 = 𝑘 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
129, 11eqeq12d 2224 . . . 4 (𝑝 = 𝑘 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
1312imbi2d 230 . . 3 (𝑝 = 𝑘 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0))))
14 fveq2 5603 . . . . . 6 (𝑝 = (𝑘 + 1) → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘(𝑘 + 1)))
1514oveq2d 5990 . . . . 5 (𝑝 = (𝑘 + 1) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))))
16 breq2 4066 . . . . . 6 (𝑝 = (𝑘 + 1) → (𝑃𝑝𝑃 ≤ (𝑘 + 1)))
1716ifbid 3604 . . . . 5 (𝑝 = (𝑘 + 1) → if(𝑃𝑝, 𝐵, 0) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))
1815, 17eqeq12d 2224 . . . 4 (𝑝 = (𝑘 + 1) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
1918imbi2d 230 . . 3 (𝑝 = (𝑘 + 1) → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
20 fveq2 5603 . . . . . 6 (𝑝 = 𝑁 → (seq1( · , 𝐹)‘𝑝) = (seq1( · , 𝐹)‘𝑁))
2120oveq2d 5990 . . . . 5 (𝑝 = 𝑁 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))
22 breq2 4066 . . . . . 6 (𝑝 = 𝑁 → (𝑃𝑝𝑃𝑁))
2322ifbid 3604 . . . . 5 (𝑝 = 𝑁 → if(𝑃𝑝, 𝐵, 0) = if(𝑃𝑁, 𝐵, 0))
2421, 23eqeq12d 2224 . . . 4 (𝑝 = 𝑁 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2524imbi2d 230 . . 3 (𝑝 = 𝑁 → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑝)) = if(𝑃𝑝, 𝐵, 0)) ↔ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))))
26 pcmpt.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
27 pc1 12794 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2826, 27syl 14 . . . 4 (𝜑 → (𝑃 pCnt 1) = 0)
29 1zzd 9441 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
30 elnnuz 9727 . . . . . . . 8 (𝑖 ∈ ℕ ↔ 𝑖 ∈ (ℤ‘1))
31 simpr 110 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
3231adantr 276 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 ∈ ℕ)
33 simpr 110 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 ∈ ℙ)
34 pcmpt.2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
3534ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
36 nfcsb1v 3137 . . . . . . . . . . . . . . 15 𝑛𝑖 / 𝑛𝐴
3736nfel1 2363 . . . . . . . . . . . . . 14 𝑛𝑖 / 𝑛𝐴 ∈ ℕ0
38 csbeq1a 3113 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
3938eleq1d 2278 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝐴 ∈ ℕ0𝑖 / 𝑛𝐴 ∈ ℕ0))
4037, 39rspc 2881 . . . . . . . . . . . . 13 (𝑖 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝑖 / 𝑛𝐴 ∈ ℕ0))
4133, 35, 40sylc 62 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → 𝑖 / 𝑛𝐴 ∈ ℕ0)
4232, 41nnexpcld 10884 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ 𝑖 ∈ ℙ) → (𝑖𝑖 / 𝑛𝐴) ∈ ℕ)
43 1nn 9089 . . . . . . . . . . . 12 1 ∈ ℕ
4443a1i 9 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ) ∧ ¬ 𝑖 ∈ ℙ) → 1 ∈ ℕ)
45 prmdc 12618 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → DECID 𝑖 ∈ ℙ)
4645adantl 277 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → DECID 𝑖 ∈ ℙ)
4742, 44, 46ifcldadc 3612 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1) ∈ ℕ)
48 nfcv 2352 . . . . . . . . . . 11 𝑛𝑖
4948nfel1 2363 . . . . . . . . . . . 12 𝑛 𝑖 ∈ ℙ
50 nfcv 2352 . . . . . . . . . . . . 13 𝑛
5148, 50, 36nfov 6004 . . . . . . . . . . . 12 𝑛(𝑖𝑖 / 𝑛𝐴)
52 nfcv 2352 . . . . . . . . . . . 12 𝑛1
5349, 51, 52nfif 3611 . . . . . . . . . . 11 𝑛if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1)
54 eleq1 2272 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛 ∈ ℙ ↔ 𝑖 ∈ ℙ))
55 id 19 . . . . . . . . . . . . 13 (𝑛 = 𝑖𝑛 = 𝑖)
5655, 38oveq12d 5992 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (𝑛𝐴) = (𝑖𝑖 / 𝑛𝐴))
5754, 56ifbieq1d 3605 . . . . . . . . . . 11 (𝑛 = 𝑖 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
58 pcmpt.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
5948, 53, 57, 58fvmptf 5700 . . . . . . . . . 10 ((𝑖 ∈ ℕ ∧ if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1) ∈ ℕ) → (𝐹𝑖) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
6031, 47, 59syl2anc 411 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = if(𝑖 ∈ ℙ, (𝑖𝑖 / 𝑛𝐴), 1))
6160, 47eqeltrd 2286 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℕ)
6230, 61sylan2br 288 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘1)) → (𝐹𝑖) ∈ ℕ)
63 nnmulcl 9099 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑖 · 𝑗) ∈ ℕ)
6463adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
6529, 62, 64seq3-1 10651 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘1) = (𝐹‘1))
66 1nprm 12602 . . . . . . . . . 10 ¬ 1 ∈ ℙ
67 eleq1 2272 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 ∈ ℙ ↔ 1 ∈ ℙ))
6866, 67mtbiri 679 . . . . . . . . 9 (𝑛 = 1 → ¬ 𝑛 ∈ ℙ)
6968iffalsed 3592 . . . . . . . 8 (𝑛 = 1 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = 1)
70 1ex 8109 . . . . . . . 8 1 ∈ V
7169, 58, 70fvmpt 5684 . . . . . . 7 (1 ∈ ℕ → (𝐹‘1) = 1)
7243, 71ax-mp 5 . . . . . 6 (𝐹‘1) = 1
7365, 72eqtrdi 2258 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘1) = 1)
7473oveq2d 5990 . . . 4 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = (𝑃 pCnt 1))
75 prmgt1 12620 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
76 1z 9440 . . . . . . . 8 1 ∈ ℤ
77 prmz 12599 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
78 zltnle 9460 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
7976, 77, 78sylancr 414 . . . . . . 7 (𝑃 ∈ ℙ → (1 < 𝑃 ↔ ¬ 𝑃 ≤ 1))
8075, 79mpbid 147 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ≤ 1)
8180iffalsed 3592 . . . . 5 (𝑃 ∈ ℙ → if(𝑃 ≤ 1, 𝐵, 0) = 0)
8226, 81syl 14 . . . 4 (𝜑 → if(𝑃 ≤ 1, 𝐵, 0) = 0)
8328, 74, 823eqtr4d 2252 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘1)) = if(𝑃 ≤ 1, 𝐵, 0))
8426adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℙ)
8558, 34pcmptcl 12831 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
8685simpld 112 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ℕ)
87 peano2nn 9090 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
88 ffvelcdm 5741 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
8986, 87, 88syl2an 289 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
9089adantrr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
9184, 90pccld 12789 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℕ0)
9291nn0cnd 9392 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) ∈ ℂ)
9392addlidd 8264 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (𝑃 pCnt (𝐹‘(𝑘 + 1))))
9487ad2antrl 490 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℕ)
9587ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
96 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
9734ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
98 nfcsb1v 3137 . . . . . . . . . . . . . . . . . . 19 𝑛(𝑘 + 1) / 𝑛𝐴
9998nfel1 2363 . . . . . . . . . . . . . . . . . 18 𝑛(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0
100 csbeq1a 3113 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑛𝐴)
101100eleq1d 2278 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
10299, 101rspc 2881 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0(𝑘 + 1) / 𝑛𝐴 ∈ ℕ0))
10396, 97, 102sylc 62 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
10495, 103nnexpcld 10884 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) ∈ ℕ)
10543a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (𝑘 + 1) ∈ ℙ) → 1 ∈ ℕ)
10687adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
107 prmdc 12618 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → DECID (𝑘 + 1) ∈ ℙ)
108106, 107syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → DECID (𝑘 + 1) ∈ ℙ)
109104, 105, 108ifcldadc 3612 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
110109adantrr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
111 nfcv 2352 . . . . . . . . . . . . . 14 𝑛(𝑘 + 1)
112 nfv 1554 . . . . . . . . . . . . . . 15 𝑛(𝑘 + 1) ∈ ℙ
113111, 50, 98nfov 6004 . . . . . . . . . . . . . . 15 𝑛((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)
114112, 113, 52nfif 3611 . . . . . . . . . . . . . 14 𝑛if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1)
115 eleq1 2272 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝑛 ∈ ℙ ↔ (𝑘 + 1) ∈ ℙ))
116 id 19 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
117116, 100oveq12d 5992 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (𝑛𝐴) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
118115, 117ifbieq1d 3605 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
119111, 114, 118, 58fvmptf 5700 . . . . . . . . . . . . 13 (((𝑘 + 1) ∈ ℕ ∧ if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
12094, 110, 119syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
121 simprr 531 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) = 𝑃)
122121, 84eqeltrd 2286 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) ∈ ℙ)
123122iftrued 3589 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
124121csbeq1d 3111 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝑃 / 𝑛𝐴)
125 nfcvd 2353 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑛𝐵)
126 pcmpt.5 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑃𝐴 = 𝐵)
127125, 126csbiegf 3148 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 / 𝑛𝐴 = 𝐵)
12884, 127syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 / 𝑛𝐴 = 𝐵)
129124, 128eqtrd 2242 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑘 + 1) / 𝑛𝐴 = 𝐵)
130121, 129oveq12d 5992 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) = (𝑃𝐵))
131120, 123, 1303eqtrd 2246 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝐹‘(𝑘 + 1)) = (𝑃𝐵))
132131oveq2d 5990 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt (𝑃𝐵)))
133126eleq1d 2278 . . . . . . . . . . . . . 14 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
134133rspcv 2883 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
13526, 34, 134sylc 62 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ0)
136135adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝐵 ∈ ℕ0)
137 pcidlem 12812 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
13826, 136, 137syl2an2r 597 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (𝑃𝐵)) = 𝐵)
13993, 132, 1383eqtrd 2246 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵)
140 oveq1 5981 . . . . . . . . . 10 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
141140eqeq1d 2218 . . . . . . . . 9 ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → (((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵 ↔ (0 + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
142139, 141syl5ibrcom 157 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
143 nnre 9085 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
144143ltp1d 9045 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 < (𝑘 + 1))
145 nnz 9433 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
14687nnzd 9536 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℤ)
147 zltnle 9460 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
148145, 146, 147syl2anc 411 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
149144, 148mpbid 147 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ¬ (𝑘 + 1) ≤ 𝑘)
150149ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ (𝑘 + 1) ≤ 𝑘)
151121breq1d 4072 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑘 + 1) ≤ 𝑘𝑃𝑘))
152150, 151mtbid 676 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ¬ 𝑃𝑘)
153152iffalsed 3592 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃𝑘, 𝐵, 0) = 0)
154153eqeq2d 2221 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = 0))
155 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
156 nnuz 9726 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
157155, 156eleqtrdi 2302 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
15862adantlr 477 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 ∈ (ℤ‘1)) → (𝐹𝑖) ∈ ℕ)
15963adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
160157, 158, 159seq3p1 10654 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘(𝑘 + 1)) = ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1))))
161160oveq2d 5990 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))))
16226adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
16385simprd 114 . . . . . . . . . . . . . 14 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
164163ffvelcdmda 5743 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
165 nnz 9433 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ∈ ℤ)
166 nnne0 9106 . . . . . . . . . . . . . 14 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → (seq1( · , 𝐹)‘𝑘) ≠ 0)
167165, 166jca 306 . . . . . . . . . . . . 13 ((seq1( · , 𝐹)‘𝑘) ∈ ℕ → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
168164, 167syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0))
169 nnz 9433 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℤ)
170 nnne0 9106 . . . . . . . . . . . . . 14 ((𝐹‘(𝑘 + 1)) ∈ ℕ → (𝐹‘(𝑘 + 1)) ≠ 0)
171169, 170jca 306 . . . . . . . . . . . . 13 ((𝐹‘(𝑘 + 1)) ∈ ℕ → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
17289, 171syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0))
173 pcmul 12790 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑘) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑘) ≠ 0) ∧ ((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝐹‘(𝑘 + 1)) ≠ 0)) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
174162, 168, 172, 173syl3anc 1252 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑘) · (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
175161, 174eqtrd 2242 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
176175adantrr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
177 prmnn 12598 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
17826, 177syl 14 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
179178nnred 9091 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ)
180179adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ∈ ℝ)
181180leidd 8629 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃𝑃)
182181, 121breqtrrd 4090 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → 𝑃 ≤ (𝑘 + 1))
183182iftrued 3589 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = 𝐵)
184176, 183eqeq12d 2224 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = 𝐵))
185142, 154, 1843imtr4d 203 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) = 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
186185expr 375 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
187175adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))))
188 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ≠ 𝑃)
189188necomd 2466 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ≠ (𝑘 + 1))
19026ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → 𝑃 ∈ ℙ)
191 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) ∈ ℙ)
19234ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
193191, 192, 102sylc 62 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0)
194 prmdvdsexpr 12638 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑘 + 1) ∈ ℙ ∧ (𝑘 + 1) / 𝑛𝐴 ∈ ℕ0) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
195190, 191, 193, 194syl3anc 1252 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴) → 𝑃 = (𝑘 + 1)))
196195necon3ad 2422 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ≠ (𝑘 + 1) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
197189, 196mpd 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
19887ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℕ)
199109adantrr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) ∈ ℕ)
200198, 199, 119syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) = if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1))
201 iftrue 3587 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
202200, 201sylan9eq 2262 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴))
203202breq2d 4074 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 ∥ (𝐹‘(𝑘 + 1)) ↔ 𝑃 ∥ ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴)))
204197, 203mtbird 677 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1)))
20586, 198, 88syl2an2r 597 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
206205adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
207 pceq0 12811 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝐹‘(𝑘 + 1)) ∈ ℕ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
208190, 206, 207syl2anc 411 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → ((𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0 ↔ ¬ 𝑃 ∥ (𝐹‘(𝑘 + 1))))
209204, 208mpbird 167 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
210 iffalse 3590 . . . . . . . . . . . . . . 15 (¬ (𝑘 + 1) ∈ ℙ → if((𝑘 + 1) ∈ ℙ, ((𝑘 + 1)↑(𝑘 + 1) / 𝑛𝐴), 1) = 1)
211200, 210sylan9eq 2262 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝐹‘(𝑘 + 1)) = 1)
212211oveq2d 5990 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = (𝑃 pCnt 1))
21328ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt 1) = 0)
214212, 213eqtrd 2242 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) ∧ ¬ (𝑘 + 1) ∈ ℙ) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
215 exmiddc 840 . . . . . . . . . . . . 13 (DECID (𝑘 + 1) ∈ ℙ → ((𝑘 + 1) ∈ ℙ ∨ ¬ (𝑘 + 1) ∈ ℙ))
216198, 107, 2153syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑘 + 1) ∈ ℙ ∨ ¬ (𝑘 + 1) ∈ ℙ))
217209, 214, 216mpjaodan 802 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (𝐹‘(𝑘 + 1))) = 0)
218217oveq2d 5990 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + (𝑃 pCnt (𝐹‘(𝑘 + 1)))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0))
21926adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℙ)
220164adantrr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (seq1( · , 𝐹)‘𝑘) ∈ ℕ)
221219, 220pccld 12789 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℕ0)
222221nn0cnd 9392 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) ∈ ℂ)
223222addridd 8263 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) + 0) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
224187, 218, 2233eqtrd 2246 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)))
225219, 77syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑃 ∈ ℤ)
226146ad2antrl 490 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ∈ ℤ)
227 zltlen 9493 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
228225, 226, 227syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 < (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
229 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → 𝑘 ∈ ℕ)
230 nnleltp1 9474 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘𝑃 < (𝑘 + 1)))
231178, 229, 230syl2an2r 597 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃𝑘𝑃 < (𝑘 + 1)))
232 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑘 + 1) ≠ 𝑃)
233232biantrud 304 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ (𝑃 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≠ 𝑃)))
234228, 231, 2333bitr4rd 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → (𝑃 ≤ (𝑘 + 1) ↔ 𝑃𝑘))
235234ifbid 3604 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) = if(𝑃𝑘, 𝐵, 0))
236224, 235eqeq12d 2224 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0) ↔ (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)))
237236biimprd 158 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑘 + 1) ≠ 𝑃)) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
238237expr 375 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) ≠ 𝑃 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
239106nnzd 9536 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
240162, 77syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑃 ∈ ℤ)
241 zdceq 9490 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID (𝑘 + 1) = 𝑃)
242239, 240, 241syl2anc 411 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → DECID (𝑘 + 1) = 𝑃)
243 dcne 2391 . . . . . . 7 (DECID (𝑘 + 1) = 𝑃 ↔ ((𝑘 + 1) = 𝑃 ∨ (𝑘 + 1) ≠ 𝑃))
244242, 243sylib 122 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) = 𝑃 ∨ (𝑘 + 1) ≠ 𝑃))
245186, 238, 244mpjaod 722 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0)))
246245expcom 116 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0) → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
247246a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑘)) = if(𝑃𝑘, 𝐵, 0)) → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘(𝑘 + 1))) = if(𝑃 ≤ (𝑘 + 1), 𝐵, 0))))
2487, 13, 19, 25, 83, 247nnind 9094 . 2 (𝑁 ∈ ℕ → (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0)))
2491, 248mpcom 36 1 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wne 2380  wral 2488  csb 3104  ifcif 3582   class class class wbr 4062  cmpt 4124  wf 5290  cfv 5294  (class class class)co 5974  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150  cn 9078  0cn0 9337  cz 9414  cuz 9690  seqcseq 10636  cexp 10727  cdvds 12264  cprime 12595   pCnt cpc 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441  df-prm 12596  df-pc 12774
This theorem is referenced by:  pcmpt2  12833  pcprod  12835  1arithlem4  12855
  Copyright terms: Public domain W3C validator