ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig GIF version

Theorem nlt1pig 6954
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig (𝐴N → ¬ 𝐴 <N 1o)

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 6921 . . 3 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 270 . 2 (𝐴N𝐴 ≠ ∅)
3 noel 3291 . . . . 5 ¬ 𝐴 ∈ ∅
4 1pi 6928 . . . . . . . . 9 1oN
5 ltpiord 6932 . . . . . . . . 9 ((𝐴N ∧ 1oN) → (𝐴 <N 1o𝐴 ∈ 1o))
64, 5mpan2 417 . . . . . . . 8 (𝐴N → (𝐴 <N 1o𝐴 ∈ 1o))
7 df-1o 6195 . . . . . . . . . 10 1o = suc ∅
87eleq2i 2155 . . . . . . . . 9 (𝐴 ∈ 1o𝐴 ∈ suc ∅)
9 elsucg 4240 . . . . . . . . 9 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9syl5bb 191 . . . . . . . 8 (𝐴N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 187 . . . . . . 7 (𝐴N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 291 . . . . . 6 ((𝐴N𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 679 . . . . 5 ((𝐴N𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 15 . . . 4 ((𝐴N𝐴 <N 1o) → 𝐴 = ∅)
1514ex 114 . . 3 (𝐴N → (𝐴 <N 1o𝐴 = ∅))
1615necon3ad 2298 . 2 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o))
172, 16mpd 13 1 (𝐴N → ¬ 𝐴 <N 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 665   = wceq 1290  wcel 1439  wne 2256  c0 3287   class class class wbr 3851  suc csuc 4201  ωcom 4418  1oc1o 6188  Ncnpi 6885   <N clti 6888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-eprel 4125  df-suc 4207  df-iom 4419  df-xp 4457  df-1o 6195  df-ni 6917  df-lti 6920
This theorem is referenced by:  caucvgsr  7401
  Copyright terms: Public domain W3C validator