ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig GIF version

Theorem nlt1pig 7408
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig (𝐴N → ¬ 𝐴 <N 1o)

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 7375 . . 3 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 275 . 2 (𝐴N𝐴 ≠ ∅)
3 noel 3454 . . . . 5 ¬ 𝐴 ∈ ∅
4 1pi 7382 . . . . . . . . 9 1oN
5 ltpiord 7386 . . . . . . . . 9 ((𝐴N ∧ 1oN) → (𝐴 <N 1o𝐴 ∈ 1o))
64, 5mpan2 425 . . . . . . . 8 (𝐴N → (𝐴 <N 1o𝐴 ∈ 1o))
7 df-1o 6474 . . . . . . . . . 10 1o = suc ∅
87eleq2i 2263 . . . . . . . . 9 (𝐴 ∈ 1o𝐴 ∈ suc ∅)
9 elsucg 4439 . . . . . . . . 9 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9bitrid 192 . . . . . . . 8 (𝐴N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 188 . . . . . . 7 (𝐴N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 296 . . . . . 6 ((𝐴N𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 725 . . . . 5 ((𝐴N𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 15 . . . 4 ((𝐴N𝐴 <N 1o) → 𝐴 = ∅)
1514ex 115 . . 3 (𝐴N → (𝐴 <N 1o𝐴 = ∅))
1615necon3ad 2409 . 2 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o))
172, 16mpd 13 1 (𝐴N → ¬ 𝐴 <N 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wne 2367  c0 3450   class class class wbr 4033  suc csuc 4400  ωcom 4626  1oc1o 6467  Ncnpi 7339   <N clti 7342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-eprel 4324  df-suc 4406  df-iom 4627  df-xp 4669  df-1o 6474  df-ni 7371  df-lti 7374
This theorem is referenced by:  caucvgsr  7869
  Copyright terms: Public domain W3C validator