| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nlt1pig | GIF version | ||
| Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
| Ref | Expression |
|---|---|
| nlt1pig | ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni 7392 | . . 3 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 2 | 1 | simprbi 275 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
| 3 | noel 3455 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | 1pi 7399 | . . . . . . . . 9 ⊢ 1o ∈ N | |
| 5 | ltpiord 7403 | . . . . . . . . 9 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) | |
| 6 | 4, 5 | mpan2 425 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) |
| 7 | df-1o 6483 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 8 | 7 | eleq2i 2263 | . . . . . . . . 9 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅) |
| 9 | elsucg 4440 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
| 10 | 8, 9 | bitrid 192 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
| 11 | 6, 10 | bitrd 188 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
| 12 | 11 | biimpa 296 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
| 13 | 12 | ord 725 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
| 14 | 3, 13 | mpi 15 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → 𝐴 = ∅) |
| 15 | 14 | ex 115 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 <N 1o → 𝐴 = ∅)) |
| 16 | 15 | necon3ad 2409 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o)) |
| 17 | 2, 16 | mpd 13 | 1 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∅c0 3451 class class class wbr 4034 suc csuc 4401 ωcom 4627 1oc1o 6476 Ncnpi 7356 <N clti 7359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-eprel 4325 df-suc 4407 df-iom 4628 df-xp 4670 df-1o 6483 df-ni 7388 df-lti 7391 |
| This theorem is referenced by: caucvgsr 7886 |
| Copyright terms: Public domain | W3C validator |