![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nlt1pig | GIF version |
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
nlt1pig | ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elni 7320 | . . 3 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
2 | 1 | simprbi 275 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
3 | noel 3438 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
4 | 1pi 7327 | . . . . . . . . 9 ⊢ 1o ∈ N | |
5 | ltpiord 7331 | . . . . . . . . 9 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) | |
6 | 4, 5 | mpan2 425 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) |
7 | df-1o 6430 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
8 | 7 | eleq2i 2254 | . . . . . . . . 9 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅) |
9 | elsucg 4416 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
10 | 8, 9 | bitrid 192 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
11 | 6, 10 | bitrd 188 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
12 | 11 | biimpa 296 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
13 | 12 | ord 725 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
14 | 3, 13 | mpi 15 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → 𝐴 = ∅) |
15 | 14 | ex 115 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 <N 1o → 𝐴 = ∅)) |
16 | 15 | necon3ad 2399 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o)) |
17 | 2, 16 | mpd 13 | 1 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∅c0 3434 class class class wbr 4015 suc csuc 4377 ωcom 4601 1oc1o 6423 Ncnpi 7284 <N clti 7287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-eprel 4301 df-suc 4383 df-iom 4602 df-xp 4644 df-1o 6430 df-ni 7316 df-lti 7319 |
This theorem is referenced by: caucvgsr 7814 |
Copyright terms: Public domain | W3C validator |