| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nlt1pig | GIF version | ||
| Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
| Ref | Expression |
|---|---|
| nlt1pig | ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni 7483 | . . 3 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 2 | 1 | simprbi 275 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
| 3 | noel 3495 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | 1pi 7490 | . . . . . . . . 9 ⊢ 1o ∈ N | |
| 5 | ltpiord 7494 | . . . . . . . . 9 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) | |
| 6 | 4, 5 | mpan2 425 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) |
| 7 | df-1o 6552 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 8 | 7 | eleq2i 2296 | . . . . . . . . 9 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅) |
| 9 | elsucg 4492 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
| 10 | 8, 9 | bitrid 192 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
| 11 | 6, 10 | bitrd 188 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
| 12 | 11 | biimpa 296 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
| 13 | 12 | ord 729 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
| 14 | 3, 13 | mpi 15 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → 𝐴 = ∅) |
| 15 | 14 | ex 115 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 <N 1o → 𝐴 = ∅)) |
| 16 | 15 | necon3ad 2442 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o)) |
| 17 | 2, 16 | mpd 13 | 1 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 class class class wbr 4082 suc csuc 4453 ωcom 4679 1oc1o 6545 Ncnpi 7447 <N clti 7450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-eprel 4377 df-suc 4459 df-iom 4680 df-xp 4722 df-1o 6552 df-ni 7479 df-lti 7482 |
| This theorem is referenced by: caucvgsr 7977 |
| Copyright terms: Public domain | W3C validator |