ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlt1pig GIF version

Theorem nlt1pig 7461
Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nlt1pig (𝐴N → ¬ 𝐴 <N 1o)

Proof of Theorem nlt1pig
StepHypRef Expression
1 elni 7428 . . 3 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 275 . 2 (𝐴N𝐴 ≠ ∅)
3 noel 3465 . . . . 5 ¬ 𝐴 ∈ ∅
4 1pi 7435 . . . . . . . . 9 1oN
5 ltpiord 7439 . . . . . . . . 9 ((𝐴N ∧ 1oN) → (𝐴 <N 1o𝐴 ∈ 1o))
64, 5mpan2 425 . . . . . . . 8 (𝐴N → (𝐴 <N 1o𝐴 ∈ 1o))
7 df-1o 6509 . . . . . . . . . 10 1o = suc ∅
87eleq2i 2273 . . . . . . . . 9 (𝐴 ∈ 1o𝐴 ∈ suc ∅)
9 elsucg 4455 . . . . . . . . 9 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9bitrid 192 . . . . . . . 8 (𝐴N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 188 . . . . . . 7 (𝐴N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 296 . . . . . 6 ((𝐴N𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 726 . . . . 5 ((𝐴N𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 15 . . . 4 ((𝐴N𝐴 <N 1o) → 𝐴 = ∅)
1514ex 115 . . 3 (𝐴N → (𝐴 <N 1o𝐴 = ∅))
1615necon3ad 2419 . 2 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o))
172, 16mpd 13 1 (𝐴N → ¬ 𝐴 <N 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wne 2377  c0 3461   class class class wbr 4047  suc csuc 4416  ωcom 4642  1oc1o 6502  Ncnpi 7392   <N clti 7395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-eprel 4340  df-suc 4422  df-iom 4643  df-xp 4685  df-1o 6509  df-ni 7424  df-lti 7427
This theorem is referenced by:  caucvgsr  7922
  Copyright terms: Public domain W3C validator