| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nlt1pig | GIF version | ||
| Description: No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.) |
| Ref | Expression |
|---|---|
| nlt1pig | ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni 7428 | . . 3 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 2 | 1 | simprbi 275 | . 2 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
| 3 | noel 3465 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | 1pi 7435 | . . . . . . . . 9 ⊢ 1o ∈ N | |
| 5 | ltpiord 7439 | . . . . . . . . 9 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) | |
| 6 | 4, 5 | mpan2 425 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) |
| 7 | df-1o 6509 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 8 | 7 | eleq2i 2273 | . . . . . . . . 9 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅) |
| 9 | elsucg 4455 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
| 10 | 8, 9 | bitrid 192 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
| 11 | 6, 10 | bitrd 188 | . . . . . . 7 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
| 12 | 11 | biimpa 296 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
| 13 | 12 | ord 726 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
| 14 | 3, 13 | mpi 15 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → 𝐴 = ∅) |
| 15 | 14 | ex 115 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 <N 1o → 𝐴 = ∅)) |
| 16 | 15 | necon3ad 2419 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o)) |
| 17 | 2, 16 | mpd 13 | 1 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∅c0 3461 class class class wbr 4047 suc csuc 4416 ωcom 4642 1oc1o 6502 Ncnpi 7392 <N clti 7395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-eprel 4340 df-suc 4422 df-iom 4643 df-xp 4685 df-1o 6509 df-ni 7424 df-lti 7427 |
| This theorem is referenced by: caucvgsr 7922 |
| Copyright terms: Public domain | W3C validator |