ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalglt GIF version

Theorem eucalglt 12225
Description: The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalglt (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . 8 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 12222 . . . . . . 7 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32adantr 276 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
4 simpr 110 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) ≠ 0)
5 iftrue 3566 . . . . . . . . . . . . 13 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
65eqeq2d 2208 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) ↔ (𝐸𝑋) = 𝑋))
7 fveq2 5558 . . . . . . . . . . . 12 ((𝐸𝑋) = 𝑋 → (2nd ‘(𝐸𝑋)) = (2nd𝑋))
86, 7biimtrdi 163 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = (2nd𝑋)))
9 eqeq2 2206 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((2nd ‘(𝐸𝑋)) = (2nd𝑋) ↔ (2nd ‘(𝐸𝑋)) = 0))
108, 9sylibd 149 . . . . . . . . . 10 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = 0))
113, 10syl5com 29 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) = 0 → (2nd ‘(𝐸𝑋)) = 0))
1211necon3ad 2409 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → ¬ (2nd𝑋) = 0))
134, 12mpd 13 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ¬ (2nd𝑋) = 0)
1413iffalsed 3571 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
153, 14eqtrd 2229 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
1615fveq2d 5562 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
17 xp2nd 6224 . . . . . 6 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
1817adantr 276 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ0)
19 1st2nd2 6233 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2019adantr 276 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2120fveq2d 5562 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
22 df-ov 5925 . . . . . . 7 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
2321, 22eqtr4di 2247 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
24 xp1st 6223 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
2524adantr 276 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℕ0)
2625nn0zd 9446 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℤ)
2713neqned 2374 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ≠ 0)
28 elnnne0 9263 . . . . . . . 8 ((2nd𝑋) ∈ ℕ ↔ ((2nd𝑋) ∈ ℕ0 ∧ (2nd𝑋) ≠ 0))
2918, 27, 28sylanbrc 417 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ)
3026, 29zmodcld 10437 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
3123, 30eqeltrd 2273 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) ∈ ℕ0)
32 op2ndg 6209 . . . . 5 (((2nd𝑋) ∈ ℕ0 ∧ ( mod ‘𝑋) ∈ ℕ0) → (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋))
3318, 31, 32syl2anc 411 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋))
3416, 33, 233eqtrd 2233 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ((1st𝑋) mod (2nd𝑋)))
35 zq 9700 . . . . 5 ((1st𝑋) ∈ ℤ → (1st𝑋) ∈ ℚ)
3626, 35syl 14 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℚ)
3718nn0zd 9446 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℤ)
38 zq 9700 . . . . 5 ((2nd𝑋) ∈ ℤ → (2nd𝑋) ∈ ℚ)
3937, 38syl 14 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℚ)
4029nngt0d 9034 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 0 < (2nd𝑋))
41 modqlt 10425 . . . 4 (((1st𝑋) ∈ ℚ ∧ (2nd𝑋) ∈ ℚ ∧ 0 < (2nd𝑋)) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
4236, 39, 40, 41syl3anc 1249 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
4334, 42eqbrtrd 4055 . 2 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) < (2nd𝑋))
4443ex 115 1 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  ifcif 3561  cop 3625   class class class wbr 4033   × cxp 4661  cfv 5258  (class class class)co 5922  cmpo 5924  1st c1st 6196  2nd c2nd 6197  0cc0 7879   < clt 8061  cn 8990  0cn0 9249  cz 9326  cq 9693   mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by:  eucalgcvga  12226
  Copyright terms: Public domain W3C validator