ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprmpw2 GIF version

Theorem pcprmpw2 12334
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Distinct variable groups:   𝐴,𝑛   𝑃,𝑛

Proof of Theorem pcprmpw2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ)
21nnnn0d 9231 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ0)
3 prmnn 12112 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℕ)
5 pccl 12301 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
65adantr 276 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℕ0)
74, 6nnexpcld 10678 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
87nnnn0d 9231 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0)
96nn0red 9232 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℝ)
109leidd 8473 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
11 simpll 527 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℙ)
126nn0zd 9375 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℤ)
13 pcid 12325 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝐴) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1411, 12, 13syl2anc 411 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1510, 14breqtrrd 4033 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
1615ad2antrr 488 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
17 simpr 110 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1817oveq1d 5892 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) = (𝑃 pCnt 𝐴))
1917oveq1d 5892 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
2016, 18, 193brtr4d 4037 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
21 simplrr 536 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝑃𝑛))
22 prmz 12113 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2322adantl 277 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
241adantr 276 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2524nnzd 9376 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
26 simprl 529 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑛 ∈ ℕ0)
274, 26nnexpcld 10678 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃𝑛) ∈ ℕ)
2827adantr 276 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℕ)
2928nnzd 9376 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℤ)
30 dvdstr 11837 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑃𝑛) ∈ ℤ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3123, 25, 29, 30syl3anc 1238 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3221, 31mpan2d 428 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 ∥ (𝑃𝑛)))
33 simpr 110 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3411adantr 276 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℙ)
35 simplrl 535 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ0)
36 prmdvdsexpr 12152 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3733, 34, 35, 36syl3anc 1238 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3832, 37syld 45 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 = 𝑃))
3938necon3ad 2389 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝𝐴))
4039imp 124 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝𝐴)
41 simplr 528 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
421ad2antrr 488 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝐴 ∈ ℕ)
43 pceq0 12323 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4441, 42, 43syl2anc 411 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4540, 44mpbird 167 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) = 0)
467ad2antrr 488 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
4741, 46pccld 12302 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ0)
4847nn0ge0d 9234 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
4945, 48eqbrtrd 4027 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
50 prmz 12113 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5150adantr 276 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℤ)
5251ad2antrr 488 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℤ)
53 zdceq 9330 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID 𝑝 = 𝑃)
5423, 52, 53syl2anc 411 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → DECID 𝑝 = 𝑃)
55 dcne 2358 . . . . . . . 8 (DECID 𝑝 = 𝑃 ↔ (𝑝 = 𝑃𝑝𝑃))
5654, 55sylib 122 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 = 𝑃𝑝𝑃))
5720, 49, 56mpjaodan 798 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5857ralrimiva 2550 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
591nnzd 9376 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℤ)
607nnzd 9376 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
61 pc2dvds 12331 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
6259, 60, 61syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
6358, 62mpbird 167 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)))
64 pcdvds 12316 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
6564adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
66 dvdseq 11856 . . . 4 (((𝐴 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0) ∧ (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
672, 8, 63, 65, 66syl22anc 1239 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
6867rexlimdvaa 2595 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
693adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℕ)
7069, 5nnexpcld 10678 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7170nnzd 9376 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
72 iddvds 11813 . . . . 5 ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
7371, 72syl 14 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
74 oveq2 5885 . . . . . 6 (𝑛 = (𝑃 pCnt 𝐴) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝐴)))
7574breq2d 4017 . . . . 5 (𝑛 = (𝑃 pCnt 𝐴) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))))
7675rspcev 2843 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
775, 73, 76syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
78 breq1 4008 . . . 4 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (𝐴 ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7978rexbidv 2478 . . 3 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
8077, 79syl5ibrcom 157 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛)))
8168, 80impbid 129 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456   class class class wbr 4005  (class class class)co 5877  0cc0 7813  cle 7995  cn 8921  0cn0 9178  cz 9255  cexp 10521  cdvds 11796  cprime 12109   pCnt cpc 12286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-xnn0 9242  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by:  pcprmpw  12335  dvdsprmpweq  12336
  Copyright terms: Public domain W3C validator