| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝐴 ∈ ℕ) |
| 2 | 1 | nnnn0d 9319 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝐴 ∈
ℕ0) |
| 3 | | prmnn 12303 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 4 | 3 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝑃 ∈ ℕ) |
| 5 | | pccl 12493 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈
ℕ0) |
| 6 | 5 | adantr 276 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃 pCnt 𝐴) ∈
ℕ0) |
| 7 | 4, 6 | nnexpcld 10804 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
| 8 | 7 | nnnn0d 9319 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈
ℕ0) |
| 9 | 6 | nn0red 9320 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃 pCnt 𝐴) ∈ ℝ) |
| 10 | 9 | leidd 8558 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴)) |
| 11 | | simpll 527 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝑃 ∈ ℙ) |
| 12 | 6 | nn0zd 9463 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃 pCnt 𝐴) ∈ ℤ) |
| 13 | | pcid 12518 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝐴) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴)) |
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴)) |
| 15 | 10, 14 | breqtrrd 4062 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 16 | 15 | ad2antrr 488 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 17 | | simpr 110 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) |
| 18 | 17 | oveq1d 5940 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) = (𝑃 pCnt 𝐴)) |
| 19 | 17 | oveq1d 5940 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 20 | 16, 18, 19 | 3brtr4d 4066 |
. . . . . . 7
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 21 | | simplrr 536 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝑃↑𝑛)) |
| 22 | | prmz 12304 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 23 | 22 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
| 24 | 1 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) |
| 25 | 24 | nnzd 9464 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
| 26 | | simprl 529 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝑛 ∈ ℕ0) |
| 27 | 4, 26 | nnexpcld 10804 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃↑𝑛) ∈ ℕ) |
| 28 | 27 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃↑𝑛) ∈ ℕ) |
| 29 | 28 | nnzd 9464 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃↑𝑛) ∈ ℤ) |
| 30 | | dvdstr 12010 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑃↑𝑛) ∈ ℤ) → ((𝑝 ∥ 𝐴 ∧ 𝐴 ∥ (𝑃↑𝑛)) → 𝑝 ∥ (𝑃↑𝑛))) |
| 31 | 23, 25, 29, 30 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ 𝐴 ∧ 𝐴 ∥ (𝑃↑𝑛)) → 𝑝 ∥ (𝑃↑𝑛))) |
| 32 | 21, 31 | mpan2d 428 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐴 → 𝑝 ∥ (𝑃↑𝑛))) |
| 33 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
| 34 | 11 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℙ) |
| 35 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ0) |
| 36 | | prmdvdsexpr 12343 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0)
→ (𝑝 ∥ (𝑃↑𝑛) → 𝑝 = 𝑃)) |
| 37 | 33, 34, 35, 36 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃↑𝑛) → 𝑝 = 𝑃)) |
| 38 | 32, 37 | syld 45 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐴 → 𝑝 = 𝑃)) |
| 39 | 38 | necon3ad 2409 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ≠ 𝑃 → ¬ 𝑝 ∥ 𝐴)) |
| 40 | 39 | imp 124 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → ¬ 𝑝 ∥ 𝐴) |
| 41 | | simplr 528 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → 𝑝 ∈ ℙ) |
| 42 | 1 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → 𝐴 ∈ ℕ) |
| 43 | | pceq0 12516 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝 ∥ 𝐴)) |
| 44 | 41, 42, 43 | syl2anc 411 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝 ∥ 𝐴)) |
| 45 | 40, 44 | mpbird 167 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → (𝑝 pCnt 𝐴) = 0) |
| 46 | 7 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
| 47 | 41, 46 | pccld 12494 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) ∈
ℕ0) |
| 48 | 47 | nn0ge0d 9322 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 49 | 45, 48 | eqbrtrd 4056 |
. . . . . . 7
⊢
(((((𝑃 ∈
ℙ ∧ 𝐴 ∈
ℕ) ∧ (𝑛 ∈
ℕ0 ∧ 𝐴
∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≠ 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 50 | | prmz 12304 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 51 | 50 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈
ℤ) |
| 52 | 51 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℤ) |
| 53 | | zdceq 9418 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
DECID 𝑝 =
𝑃) |
| 54 | 23, 52, 53 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → DECID
𝑝 = 𝑃) |
| 55 | | dcne 2378 |
. . . . . . . 8
⊢
(DECID 𝑝 = 𝑃 ↔ (𝑝 = 𝑃 ∨ 𝑝 ≠ 𝑃)) |
| 56 | 54, 55 | sylib 122 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 = 𝑃 ∨ 𝑝 ≠ 𝑃)) |
| 57 | 20, 49, 56 | mpjaodan 799 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 58 | 57 | ralrimiva 2570 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))) |
| 59 | 1 | nnzd 9464 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝐴 ∈ ℤ) |
| 60 | 7 | nnzd 9464 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) |
| 61 | | pc2dvds 12524 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))) |
| 62 | 59, 60, 61 | syl2anc 411 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))) |
| 63 | 58, 62 | mpbird 167 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴))) |
| 64 | | pcdvds 12509 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
| 65 | 64 | adantr 276 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
| 66 | | dvdseq 12030 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0) ∧ (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))) |
| 67 | 2, 8, 63, 65, 66 | syl22anc 1250 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0
∧ 𝐴 ∥ (𝑃↑𝑛))) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))) |
| 68 | 67 | rexlimdvaa 2615 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) →
(∃𝑛 ∈
ℕ0 𝐴
∥ (𝑃↑𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
| 69 | 3 | adantr 276 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈
ℕ) |
| 70 | 69, 5 | nnexpcld 10804 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
| 71 | 70 | nnzd 9464 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) |
| 72 | | iddvds 11986 |
. . . . 5
⊢ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) |
| 73 | 71, 72 | syl 14 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) |
| 74 | | oveq2 5933 |
. . . . . 6
⊢ (𝑛 = (𝑃 pCnt 𝐴) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt 𝐴))) |
| 75 | 74 | breq2d 4046 |
. . . . 5
⊢ (𝑛 = (𝑃 pCnt 𝐴) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))) |
| 76 | 75 | rspcev 2868 |
. . . 4
⊢ (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑𝑛)) |
| 77 | 5, 73, 76 | syl2anc 411 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) →
∃𝑛 ∈
ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑𝑛)) |
| 78 | | breq1 4037 |
. . . 4
⊢ (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (𝐴 ∥ (𝑃↑𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑𝑛))) |
| 79 | 78 | rexbidv 2498 |
. . 3
⊢ (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑𝑛))) |
| 80 | 77, 79 | syl5ibrcom 157 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛))) |
| 81 | 68, 80 | impbid 129 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) →
(∃𝑛 ∈
ℕ0 𝐴
∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |