ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprmpw2 GIF version

Theorem pcprmpw2 12315
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Distinct variable groups:   𝐴,𝑛   𝑃,𝑛

Proof of Theorem pcprmpw2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ)
21nnnn0d 9218 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ0)
3 prmnn 12093 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43ad2antrr 488 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℕ)
5 pccl 12282 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
65adantr 276 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℕ0)
74, 6nnexpcld 10661 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
87nnnn0d 9218 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0)
96nn0red 9219 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℝ)
109leidd 8461 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
11 simpll 527 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℙ)
126nn0zd 9362 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℤ)
13 pcid 12306 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝐴) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1411, 12, 13syl2anc 411 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1510, 14breqtrrd 4028 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
1615ad2antrr 488 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
17 simpr 110 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1817oveq1d 5884 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) = (𝑃 pCnt 𝐴))
1917oveq1d 5884 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
2016, 18, 193brtr4d 4032 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
21 simplrr 536 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝑃𝑛))
22 prmz 12094 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2322adantl 277 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
241adantr 276 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2524nnzd 9363 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
26 simprl 529 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑛 ∈ ℕ0)
274, 26nnexpcld 10661 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃𝑛) ∈ ℕ)
2827adantr 276 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℕ)
2928nnzd 9363 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℤ)
30 dvdstr 11819 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑃𝑛) ∈ ℤ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3123, 25, 29, 30syl3anc 1238 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3221, 31mpan2d 428 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 ∥ (𝑃𝑛)))
33 simpr 110 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3411adantr 276 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℙ)
35 simplrl 535 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ0)
36 prmdvdsexpr 12133 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3733, 34, 35, 36syl3anc 1238 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3832, 37syld 45 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 = 𝑃))
3938necon3ad 2389 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝𝐴))
4039imp 124 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝𝐴)
41 simplr 528 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
421ad2antrr 488 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝐴 ∈ ℕ)
43 pceq0 12304 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4441, 42, 43syl2anc 411 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4540, 44mpbird 167 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) = 0)
467ad2antrr 488 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
4741, 46pccld 12283 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ0)
4847nn0ge0d 9221 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
4945, 48eqbrtrd 4022 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
50 prmz 12094 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5150adantr 276 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℤ)
5251ad2antrr 488 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℤ)
53 zdceq 9317 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID 𝑝 = 𝑃)
5423, 52, 53syl2anc 411 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → DECID 𝑝 = 𝑃)
55 dcne 2358 . . . . . . . 8 (DECID 𝑝 = 𝑃 ↔ (𝑝 = 𝑃𝑝𝑃))
5654, 55sylib 122 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 = 𝑃𝑝𝑃))
5720, 49, 56mpjaodan 798 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5857ralrimiva 2550 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
591nnzd 9363 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℤ)
607nnzd 9363 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
61 pc2dvds 12312 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
6259, 60, 61syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
6358, 62mpbird 167 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)))
64 pcdvds 12297 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
6564adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
66 dvdseq 11837 . . . 4 (((𝐴 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0) ∧ (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
672, 8, 63, 65, 66syl22anc 1239 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
6867rexlimdvaa 2595 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
693adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℕ)
7069, 5nnexpcld 10661 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7170nnzd 9363 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
72 iddvds 11795 . . . . 5 ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
7371, 72syl 14 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
74 oveq2 5877 . . . . . 6 (𝑛 = (𝑃 pCnt 𝐴) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝐴)))
7574breq2d 4012 . . . . 5 (𝑛 = (𝑃 pCnt 𝐴) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))))
7675rspcev 2841 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
775, 73, 76syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
78 breq1 4003 . . . 4 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (𝐴 ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7978rexbidv 2478 . . 3 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
8077, 79syl5ibrcom 157 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛)))
8168, 80impbid 129 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456   class class class wbr 4000  (class class class)co 5869  0cc0 7802  cle 7983  cn 8908  0cn0 9165  cz 9242  cexp 10505  cdvds 11778  cprime 12090   pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-xnn0 9229  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcprmpw  12316  dvdsprmpweq  12317
  Copyright terms: Public domain W3C validator