ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ad Unicode version

Theorem necon3ad 2387
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ad.1  |-  ( ph  ->  ( ps  ->  A  =  B ) )
Assertion
Ref Expression
necon3ad  |-  ( ph  ->  ( A  =/=  B  ->  -.  ps ) )

Proof of Theorem necon3ad
StepHypRef Expression
1 df-ne 2346 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3ad.1 . . 3  |-  ( ph  ->  ( ps  ->  A  =  B ) )
32con3d 631 . 2  |-  ( ph  ->  ( -.  A  =  B  ->  -.  ps )
)
41, 3biimtrid 152 1  |-  ( ph  ->  ( A  =/=  B  ->  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    =/= wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2346
This theorem is referenced by:  necon3d  2389  disjnim  3989  fodjumkvlemres  7147  nlt1pig  7315  eucalglt  12022  nprm  12088  pcprmpw2  12297  pcmpt  12306  expnprm  12316  0nnei  13222  2sqlem8a  14027  bj-charfunr  14120
  Copyright terms: Public domain W3C validator