ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8 GIF version

Theorem 2sqlem8 13753
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.e 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
2sqlem8.f 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
Assertion
Ref Expression
2sqlem8 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝐸,𝑎,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝐸(𝑤,𝑏)   𝐹(𝑤,𝑏)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem8.m . . . 4 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 9563 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 121 . . 3 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 111 . 2 (𝜑𝑀 ∈ ℕ)
6 2sqlem9.7 . . . . . . 7 (𝜑𝑀𝑁)
7 eluzelz 9496 . . . . . . . . 9 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
82, 7syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 2sqlem8.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
109nnzd 9333 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
11 2sqlem8.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 2sqlem8.c . . . . . . . . . . . 12 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1311, 5, 124sqlem5 12334 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1413simpld 111 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
15 zsqcl 10546 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
1614, 15syl 14 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
17 2sqlem8.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 2sqlem8.d . . . . . . . . . . . 12 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 5, 184sqlem5 12334 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
2019simpld 111 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
21 zsqcl 10546 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
2220, 21syl 14 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
2316, 22zaddcld 9338 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
24 zsqcl 10546 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
2511, 24syl 14 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℤ)
2625, 16zsubcld 9339 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) − (𝐶↑2)) ∈ ℤ)
27 zsqcl 10546 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
2817, 27syl 14 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℤ)
2928, 22zsubcld 9339 . . . . . . . . . 10 (𝜑 → ((𝐵↑2) − (𝐷↑2)) ∈ ℤ)
3011, 5, 124sqlem8 12337 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐶↑2)))
3117, 5, 184sqlem8 12337 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐷↑2)))
328, 26, 29, 30, 31dvds2addd 11791 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
33 2sqlem8.4 . . . . . . . . . . 11 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
3433oveq1d 5868 . . . . . . . . . 10 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))))
3525zcnd 9335 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
3628zcnd 9335 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
3716zcnd 9335 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
3822zcnd 9335 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
3935, 36, 37, 38addsub4d 8277 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4034, 39eqtrd 2203 . . . . . . . . 9 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4132, 40breqtrrd 4017 . . . . . . . 8 (𝜑𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2))))
42 dvdssub2 11797 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) ∧ 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
438, 10, 23, 41, 42syl31anc 1236 . . . . . . 7 (𝜑 → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
446, 43mpbid 146 . . . . . 6 (𝜑𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))
45 2sqlem7.2 . . . . . . . . . . . 12 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
46 2sqlem9.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
47 2sqlem8.3 . . . . . . . . . . . 12 (𝜑 → (𝐴 gcd 𝐵) = 1)
481, 45, 46, 6, 9, 2, 11, 17, 47, 33, 12, 182sqlem8a 13752 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
4948nnzd 9333 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℤ)
50 zsqcl2 10553 . . . . . . . . . 10 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5149, 50syl 14 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5251nn0cnd 9190 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℂ)
53 2sqlem8.e . . . . . . . . . . 11 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
54 gcddvds 11918 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5514, 20, 54syl2anc 409 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5655simpld 111 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐶)
5748nnne0d 8923 . . . . . . . . . . . . 13 (𝜑 → (𝐶 gcd 𝐷) ≠ 0)
58 dvdsval2 11752 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
5949, 57, 14, 58syl3anc 1233 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6056, 59mpbid 146 . . . . . . . . . . 11 (𝜑 → (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)
6153, 60eqeltrid 2257 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
62 zsqcl2 10553 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
6361, 62syl 14 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℕ0)
6463nn0cnd 9190 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℂ)
65 2sqlem8.f . . . . . . . . . . 11 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
6655simprd 113 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐷)
67 dvdsval2 11752 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
6849, 57, 20, 67syl3anc 1233 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
6966, 68mpbid 146 . . . . . . . . . . 11 (𝜑 → (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)
7065, 69eqeltrid 2257 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
71 zsqcl2 10553 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7270, 71syl 14 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℕ0)
7372nn0cnd 9190 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℂ)
7452, 64, 73adddid 7944 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))))
7549zcnd 9335 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℂ)
7661zcnd 9335 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
7775, 76sqmuld 10621 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)))
7853oveq2i 5864 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐸) = ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷)))
7914zcnd 9335 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8048nnap0d 8924 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) # 0)
8179, 75, 80divcanap2d 8709 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) = 𝐶)
8278, 81eqtrid 2215 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐸) = 𝐶)
8382oveq1d 5868 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (𝐶↑2))
8477, 83eqtr3d 2205 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) = (𝐶↑2))
8570zcnd 9335 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
8675, 85sqmuld 10621 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)))
8765oveq2i 5864 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐹) = ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷)))
8820zcnd 9335 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℂ)
8988, 75, 80divcanap2d 8709 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) = 𝐷)
9087, 89eqtrid 2215 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐹) = 𝐷)
9190oveq1d 5868 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (𝐷↑2))
9286, 91eqtr3d 2205 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)) = (𝐷↑2))
9384, 92oveq12d 5871 . . . . . . 7 (𝜑 → ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9474, 93eqtrd 2203 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9544, 94breqtrrd 4017 . . . . 5 (𝜑𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
96 zsqcl 10546 . . . . . . . 8 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
9749, 96syl 14 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
988, 97gcdcomd 11929 . . . . . 6 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
9949, 8gcdcld 11923 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ0)
10099nn0zd 9332 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ)
101 gcddvds 11918 . . . . . . . . . . . . . 14 (((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
10249, 8, 101syl2anc 409 . . . . . . . . . . . . 13 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
103102simpld 111 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷))
104100, 49, 14, 103, 56dvdstrd 11792 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)
10511, 14zsubcld 9339 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐶) ∈ ℤ)
106102simprd 113 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)
10713simprd 113 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐶) / 𝑀) ∈ ℤ)
1085nnne0d 8923 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≠ 0)
109 dvdsval2 11752 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐶) ∈ ℤ) → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1108, 108, 105, 109syl3anc 1233 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
111107, 110mpbird 166 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐴𝐶))
112100, 8, 105, 106, 111dvdstrd 11792 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶))
113 dvdssub2 11797 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
114100, 11, 14, 112, 113syl31anc 1236 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
115104, 114mpbird 166 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴)
116100, 49, 20, 103, 66dvdstrd 11792 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)
11717, 20zsubcld 9339 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐷) ∈ ℤ)
11819simprd 113 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐷) / 𝑀) ∈ ℤ)
119 dvdsval2 11752 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐵𝐷) ∈ ℤ) → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1208, 108, 117, 119syl3anc 1233 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
121118, 120mpbird 166 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐵𝐷))
122100, 8, 117, 106, 121dvdstrd 11792 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷))
123 dvdssub2 11797 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
124100, 17, 20, 122, 123syl31anc 1236 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
125116, 124mpbird 166 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵)
126 1ne0 8946 . . . . . . . . . . . . . . 15 1 ≠ 0
127126a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
12847, 127eqnetrd 2364 . . . . . . . . . . . . 13 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
129128neneqd 2361 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
130 gcdeq0 11932 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
13111, 17, 130syl2anc 409 . . . . . . . . . . . 12 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
132129, 131mtbid 667 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
133 dvdslegcd 11919 . . . . . . . . . . 11 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
134100, 11, 17, 132, 133syl31anc 1236 . . . . . . . . . 10 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
135115, 125, 134mp2and 431 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))
136135, 47breqtrd 4015 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1)
137 simpr 109 . . . . . . . . . . . 12 (((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
138137necon3ai 2389 . . . . . . . . . . 11 (𝑀 ≠ 0 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
139108, 138syl 14 . . . . . . . . . 10 (𝜑 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
140 gcdn0cl 11917 . . . . . . . . . 10 ((((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
14149, 8, 139, 140syl21anc 1232 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
142 nnle1eq1 8902 . . . . . . . . 9 (((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
143141, 142syl 14 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
144136, 143mpbid 146 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) = 1)
145 2nn 9039 . . . . . . . . 9 2 ∈ ℕ
146145a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
147 rplpwr 11982 . . . . . . . 8 (((𝐶 gcd 𝐷) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ) → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
14848, 5, 146, 147syl3anc 1233 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
149144, 148mpd 13 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)
15098, 149eqtrd 2203 . . . . 5 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1)
15163, 72nn0addcld 9192 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
152151nn0zd 9332 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
153 coprmdvds 12046 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
1548, 97, 152, 153syl3anc 1233 . . . . 5 (𝜑 → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
15595, 150, 154mp2and 431 . . . 4 (𝜑𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))
156 dvdsval2 11752 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
1578, 108, 152, 156syl3anc 1233 . . . 4 (𝜑 → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
158155, 157mpbid 146 . . 3 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
15963nn0red 9189 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℝ)
16072nn0red 9189 . . . . 5 (𝜑 → (𝐹↑2) ∈ ℝ)
161159, 160readdcld 7949 . . . 4 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
1625nnred 8891 . . . 4 (𝜑𝑀 ∈ ℝ)
1631, 452sqlem7 13751 . . . . . . 7 𝑌 ⊆ (𝑆 ∩ ℕ)
164 inss2 3348 . . . . . . 7 (𝑆 ∩ ℕ) ⊆ ℕ
165163, 164sstri 3156 . . . . . 6 𝑌 ⊆ ℕ
16661, 70gcdcld 11923 . . . . . . . . . 10 (𝜑 → (𝐸 gcd 𝐹) ∈ ℕ0)
167166nn0cnd 9190 . . . . . . . . 9 (𝜑 → (𝐸 gcd 𝐹) ∈ ℂ)
168 1cnd 7936 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
16975mulid1d 7937 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 1) = (𝐶 gcd 𝐷))
17082, 90oveq12d 5871 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = (𝐶 gcd 𝐷))
17114, 20gcdcld 11923 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ0)
172 mulgcd 11971 . . . . . . . . . . 11 (((𝐶 gcd 𝐷) ∈ ℕ0𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
173171, 61, 70, 172syl3anc 1233 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
174169, 170, 1733eqtr2rd 2210 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)) = ((𝐶 gcd 𝐷) · 1))
175167, 168, 75, 80, 174mulcanapad 8581 . . . . . . . 8 (𝜑 → (𝐸 gcd 𝐹) = 1)
176 eqidd 2171 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))
177 oveq1 5860 . . . . . . . . . . 11 (𝑥 = 𝐸 → (𝑥 gcd 𝑦) = (𝐸 gcd 𝑦))
178177eqeq1d 2179 . . . . . . . . . 10 (𝑥 = 𝐸 → ((𝑥 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝑦) = 1))
179 oveq1 5860 . . . . . . . . . . . 12 (𝑥 = 𝐸 → (𝑥↑2) = (𝐸↑2))
180179oveq1d 5868 . . . . . . . . . . 11 (𝑥 = 𝐸 → ((𝑥↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝑦↑2)))
181180eqeq2d 2182 . . . . . . . . . 10 (𝑥 = 𝐸 → (((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))))
182178, 181anbi12d 470 . . . . . . . . 9 (𝑥 = 𝐸 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)))))
183 oveq2 5861 . . . . . . . . . . 11 (𝑦 = 𝐹 → (𝐸 gcd 𝑦) = (𝐸 gcd 𝐹))
184183eqeq1d 2179 . . . . . . . . . 10 (𝑦 = 𝐹 → ((𝐸 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝐹) = 1))
185 oveq1 5860 . . . . . . . . . . . 12 (𝑦 = 𝐹 → (𝑦↑2) = (𝐹↑2))
186185oveq2d 5869 . . . . . . . . . . 11 (𝑦 = 𝐹 → ((𝐸↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝐹↑2)))
187186eqeq2d 2182 . . . . . . . . . 10 (𝑦 = 𝐹 → (((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))))
188184, 187anbi12d 470 . . . . . . . . 9 (𝑦 = 𝐹 → (((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))))
189182, 188rspc2ev 2849 . . . . . . . 8 ((𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
19061, 70, 175, 176, 189syl112anc 1237 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
191 eqeq1 2177 . . . . . . . . . . 11 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
192191anbi2d 461 . . . . . . . . . 10 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
1931922rexbidv 2495 . . . . . . . . 9 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
194193, 45elab2g 2877 . . . . . . . 8 (((𝐸↑2) + (𝐹↑2)) ∈ ℕ0 → (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
195151, 194syl 14 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
196190, 195mpbird 166 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
197165, 196sselid 3145 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ)
198197nngt0d 8922 . . . 4 (𝜑 → 0 < ((𝐸↑2) + (𝐹↑2)))
1995nngt0d 8922 . . . 4 (𝜑 → 0 < 𝑀)
200161, 162, 198, 199divgt0d 8851 . . 3 (𝜑 → 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀))
201 elnnz 9222 . . 3 ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ ↔ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
202158, 200, 201sylanbrc 415 . 2 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
203 prmnn 12064 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
204203ad2antrl 487 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℕ)
205204nnred 8891 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℝ)
206158adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
207206zred 9334 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℝ)
208 peano2zm 9250 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2098, 208syl 14 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) ∈ ℤ)
210209zred 9334 . . . . . . . . 9 (𝜑 → (𝑀 − 1) ∈ ℝ)
211210adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℝ)
212 simprr 527 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
213 prmz 12065 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
214213ad2antrl 487 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℤ)
215202adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
216 dvdsle 11804 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
217214, 215, 216syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
218212, 217mpd 13 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
219 zsqcl 10546 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
2208, 219syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℤ)
221220zred 9334 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ)
222221rehalfcld 9124 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
22316zred 9334 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶↑2) ∈ ℝ)
22422zred 9334 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷↑2) ∈ ℝ)
225223, 224readdcld 7949 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℝ)
226 1red 7935 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
22748nnsqcld 10630 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ)
228227nnred 8891 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℝ)
229151nn0ge0d 9191 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
230227nnge1d 8921 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ ((𝐶 gcd 𝐷)↑2))
231226, 228, 161, 229, 230lemul1ad 8855 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) ≤ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
232151nn0cnd 9190 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
233232mulid2d 7938 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) = ((𝐸↑2) + (𝐹↑2)))
234231, 233, 943brtr3d 4020 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝐶↑2) + (𝐷↑2)))
235222rehalfcld 9124 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
23611, 5, 124sqlem7 12336 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) ≤ (((𝑀↑2) / 2) / 2))
23717, 5, 184sqlem7 12336 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷↑2) ≤ (((𝑀↑2) / 2) / 2))
238223, 224, 235, 235, 236, 237le2addd 8482 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
239222recnd 7948 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
2402392halvesd 9123 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
241238, 240breqtrd 4015 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((𝑀↑2) / 2))
242161, 225, 222, 234, 241letrd 8043 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
2435nnsqcld 10630 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℕ)
244243nnrpd 9651 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ+)
245 rphalflt 9640 . . . . . . . . . . . . . 14 ((𝑀↑2) ∈ ℝ+ → ((𝑀↑2) / 2) < (𝑀↑2))
246244, 245syl 14 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) < (𝑀↑2))
247161, 222, 221, 242, 246lelttrd 8044 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀↑2))
2488zcnd 9335 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
249248sqvald 10606 . . . . . . . . . . . 12 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
250247, 249breqtrd 4015 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))
251 ltdivmul 8792 . . . . . . . . . . . 12 ((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
252161, 162, 162, 199, 251syl112anc 1237 . . . . . . . . . . 11 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
253250, 252mpbird 166 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀)
254 zltlem1 9269 . . . . . . . . . . 11 (((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
255158, 8, 254syl2anc 409 . . . . . . . . . 10 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
256253, 255mpbid 146 . . . . . . . . 9 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
257256adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
258205, 207, 211, 218, 257letrd 8043 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (𝑀 − 1))
259209adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℤ)
260 fznn 10045 . . . . . . . 8 ((𝑀 − 1) ∈ ℤ → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
261259, 260syl 14 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
262204, 258, 261mpbir2and 939 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ (1...(𝑀 − 1)))
263196adantr 274 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
264262, 263jca 304 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌))
26546adantr 274 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
266152adantr 274 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
267 dvdsmul2 11776 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
2688, 158, 267syl2anc 409 . . . . . . . 8 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
2695nnap0d 8924 . . . . . . . . 9 (𝜑𝑀 # 0)
270232, 248, 269divcanap2d 8709 . . . . . . . 8 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) = ((𝐸↑2) + (𝐹↑2)))
271268, 270breqtrd 4015 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
272271adantr 274 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
273214, 206, 266, 212, 272dvdstrd 11792 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))
274 breq1 3992 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑎𝑝𝑎))
275 eleq1w 2231 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑆𝑝𝑆))
276274, 275imbi12d 233 . . . . . 6 (𝑏 = 𝑝 → ((𝑏𝑎𝑏𝑆) ↔ (𝑝𝑎𝑝𝑆)))
277 breq2 3993 . . . . . . 7 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → (𝑝𝑎𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
278277imbi1d 230 . . . . . 6 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → ((𝑝𝑎𝑝𝑆) ↔ (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
279276, 278rspc2v 2847 . . . . 5 ((𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) → (∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
280264, 265, 273, 279syl3c 63 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝𝑆)
281280expr 373 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
282281ralrimiva 2543 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
283 inss1 3347 . . . . 5 (𝑆 ∩ ℕ) ⊆ 𝑆
284163, 283sstri 3156 . . . 4 𝑌𝑆
285284, 196sselid 3145 . . 3 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑆)
286270, 285eqeltrd 2247 . 2 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) ∈ 𝑆)
2871, 5, 202, 282, 2862sqlem6 13750 1 (𝜑𝑀𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wne 2340  wral 2448  wrex 2449  cin 3120   class class class wbr 3989  cmpt 4050  ran crn 4612  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  +crp 9610  ...cfz 9965   mod cmo 10278  cexp 10475  abscabs 10961  cdvds 11749   gcd cgcd 11897  cprime 12061  ℤ[i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-gz 12322
This theorem is referenced by:  2sqlem9  13754
  Copyright terms: Public domain W3C validator