| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcd1 | GIF version | ||
| Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| Ref | Expression |
|---|---|
| gcd1 | ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9411 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 2 | gcddvds 12334 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1)) | |
| 3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 𝑀 ∧ (𝑀 gcd 1) ∥ 1)) |
| 4 | 3 | simprd 114 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ∥ 1) |
| 5 | 1ne0 9117 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
| 6 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑀 = 0 ∧ 1 = 0) → 1 = 0) | |
| 7 | 6 | necon3ai 2426 | . . . . . . . 8 ⊢ (1 ≠ 0 → ¬ (𝑀 = 0 ∧ 1 = 0)) |
| 8 | 5, 7 | ax-mp 5 | . . . . . . 7 ⊢ ¬ (𝑀 = 0 ∧ 1 = 0) |
| 9 | gcdn0cl 12333 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 1 = 0)) → (𝑀 gcd 1) ∈ ℕ) | |
| 10 | 8, 9 | mpan2 425 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑀 gcd 1) ∈ ℕ) |
| 11 | 1, 10 | mpan2 425 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℕ) |
| 12 | 11 | nnzd 9507 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ∈ ℤ) |
| 13 | 1nn 9060 | . . . 4 ⊢ 1 ∈ ℕ | |
| 14 | dvdsle 12205 | . . . 4 ⊢ (((𝑀 gcd 1) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1)) | |
| 15 | 12, 13, 14 | sylancl 413 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 gcd 1) ∥ 1 → (𝑀 gcd 1) ≤ 1)) |
| 16 | 4, 15 | mpd 13 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) ≤ 1) |
| 17 | nnle1eq1 9073 | . . 3 ⊢ ((𝑀 gcd 1) ∈ ℕ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1)) | |
| 18 | 11, 17 | syl 14 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑀 gcd 1) ≤ 1 ↔ (𝑀 gcd 1) = 1)) |
| 19 | 16, 18 | mpbid 147 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4048 (class class class)co 5954 0cc0 7938 1c1 7939 ≤ cle 8121 ℕcn 9049 ℤcz 9385 ∥ cdvds 12148 gcd cgcd 12324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-sup 7098 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-dvds 12149 df-gcd 12325 |
| This theorem is referenced by: 1gcd 12363 lcm1 12453 dfphi2 12592 pockthlem 12729 lgs1 15571 lgsquad2lem2 15609 |
| Copyright terms: Public domain | W3C validator |