ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0b GIF version

Theorem map0b 6787
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
map0b (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅)

Proof of Theorem map0b
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 6770 . . . 4 (𝑓 ∈ (∅ ↑𝑚 𝐴) → 𝑓:𝐴⟶∅)
2 fdm 5441 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴)
3 frn 5444 . . . . . . 7 (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅)
4 ss0 3505 . . . . . . 7 (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅)
53, 4syl 14 . . . . . 6 (𝑓:𝐴⟶∅ → ran 𝑓 = ∅)
6 dm0rn0 4904 . . . . . 6 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
75, 6sylibr 134 . . . . 5 (𝑓:𝐴⟶∅ → dom 𝑓 = ∅)
82, 7eqtr3d 2241 . . . 4 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
91, 8syl 14 . . 3 (𝑓 ∈ (∅ ↑𝑚 𝐴) → 𝐴 = ∅)
109necon3ai 2426 . 2 (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑𝑚 𝐴))
1110eq0rdv 3509 1 (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wne 2377  wss 3170  c0 3464  dom cdm 4683  ran crn 4684  wf 5276  (class class class)co 5957  𝑚 cmap 6748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-map 6750
This theorem is referenced by:  map0g  6788
  Copyright terms: Public domain W3C validator