![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > map0b | GIF version |
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
map0b | ⊢ (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6726 | . . . 4 ⊢ (𝑓 ∈ (∅ ↑𝑚 𝐴) → 𝑓:𝐴⟶∅) | |
2 | fdm 5410 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴) | |
3 | frn 5413 | . . . . . . 7 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅) | |
4 | ss0 3488 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅) | |
5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 = ∅) |
6 | dm0rn0 4880 | . . . . . 6 ⊢ (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅) | |
7 | 5, 6 | sylibr 134 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = ∅) |
8 | 2, 7 | eqtr3d 2228 | . . . 4 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
9 | 1, 8 | syl 14 | . . 3 ⊢ (𝑓 ∈ (∅ ↑𝑚 𝐴) → 𝐴 = ∅) |
10 | 9 | necon3ai 2413 | . 2 ⊢ (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑𝑚 𝐴)) |
11 | 10 | eq0rdv 3492 | 1 ⊢ (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ⊆ wss 3154 ∅c0 3447 dom cdm 4660 ran crn 4661 ⟶wf 5251 (class class class)co 5919 ↑𝑚 cmap 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-map 6706 |
This theorem is referenced by: map0g 6744 |
Copyright terms: Public domain | W3C validator |