![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > map0b | GIF version |
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
map0b | ⊢ (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6427 | . . . 4 ⊢ (𝑓 ∈ (∅ ↑𝑚 𝐴) → 𝑓:𝐴⟶∅) | |
2 | fdm 5166 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = 𝐴) | |
3 | frn 5169 | . . . . . . 7 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 ⊆ ∅) | |
4 | ss0 3323 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅) | |
5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ → ran 𝑓 = ∅) |
6 | dm0rn0 4653 | . . . . . 6 ⊢ (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅) | |
7 | 5, 6 | sylibr 132 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → dom 𝑓 = ∅) |
8 | 2, 7 | eqtr3d 2122 | . . . 4 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
9 | 1, 8 | syl 14 | . . 3 ⊢ (𝑓 ∈ (∅ ↑𝑚 𝐴) → 𝐴 = ∅) |
10 | 9 | necon3ai 2304 | . 2 ⊢ (𝐴 ≠ ∅ → ¬ 𝑓 ∈ (∅ ↑𝑚 𝐴)) |
11 | 10 | eq0rdv 3327 | 1 ⊢ (𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 ⊆ wss 2999 ∅c0 3286 dom cdm 4438 ran crn 4439 ⟶wf 5011 (class class class)co 5652 ↑𝑚 cmap 6405 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-map 6407 |
This theorem is referenced by: map0g 6445 |
Copyright terms: Public domain | W3C validator |