ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn2 GIF version

Theorem disjsn2 3639
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 3594 . . . 4 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
21eqcomd 2171 . . 3 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
32necon3ai 2385 . 2 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
4 disjsn 3638 . 2 (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴})
53, 4sylibr 133 1 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  wne 2336  cin 3115  c0 3409  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-nul 3410  df-sn 3582
This theorem is referenced by:  disjpr2  3640  difprsn1  3712  diftpsn3  3714  xpsndisj  5030  funprg  5238  funtp  5241  f1oprg  5476  xp01disjl  6402  enpr2d  6783  phplem1  6818  prfidisj  6892  djuinr  7028  pm54.43  7146  pr2nelem  7147  sumpr  11354  setsfun0  12430  setscom  12434
  Copyright terms: Public domain W3C validator