Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjsn2 | GIF version |
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3594 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2171 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
3 | 2 | necon3ai 2385 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
4 | disjsn 3638 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∩ cin 3115 ∅c0 3409 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-nul 3410 df-sn 3582 |
This theorem is referenced by: disjpr2 3640 difprsn1 3712 diftpsn3 3714 xpsndisj 5030 funprg 5238 funtp 5241 f1oprg 5476 xp01disjl 6402 enpr2d 6783 phplem1 6818 prfidisj 6892 djuinr 7028 pm54.43 7146 pr2nelem 7147 sumpr 11354 setsfun0 12430 setscom 12434 |
Copyright terms: Public domain | W3C validator |