Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjsn2 | GIF version |
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3601 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2176 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
3 | 2 | necon3ai 2389 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
4 | disjsn 3645 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∩ cin 3120 ∅c0 3414 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-nul 3415 df-sn 3589 |
This theorem is referenced by: disjpr2 3647 difprsn1 3719 diftpsn3 3721 xpsndisj 5037 funprg 5248 funtp 5251 f1oprg 5486 xp01disjl 6413 enpr2d 6795 phplem1 6830 prfidisj 6904 djuinr 7040 pm54.43 7167 pr2nelem 7168 sumpr 11376 setsfun0 12452 setscom 12456 |
Copyright terms: Public domain | W3C validator |