| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn2 | GIF version | ||
| Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3641 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2202 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2416 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 3685 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∩ cin 3156 ∅c0 3451 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-nul 3452 df-sn 3629 |
| This theorem is referenced by: disjpr2 3687 difprsn1 3762 diftpsn3 3764 xpsndisj 5097 funprg 5309 funtp 5312 f1oprg 5551 xp01disjl 6501 enpr2d 6885 phplem1 6922 prfidisj 6997 djuinr 7138 pm54.43 7269 pr2nelem 7270 sumpr 11595 setsfun0 12739 setscom 12743 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |