ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn2 GIF version

Theorem disjsn2 3698
Description: Intersection of distinct singletons is disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 3653 . . . 4 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
21eqcomd 2212 . . 3 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
32necon3ai 2426 . 2 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
4 disjsn 3697 . 2 (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴})
53, 4sylibr 134 1 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  wne 2377  cin 3167  c0 3462  {csn 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3170  df-in 3174  df-nul 3463  df-sn 3641
This theorem is referenced by:  disjpr2  3699  difprsn1  3775  diftpsn3  3777  xpsndisj  5115  funprg  5330  funtp  5333  f1oprg  5576  xp01disjl  6530  enpr2d  6922  phplem1  6961  prfidisj  7036  djuinr  7177  pm54.43  7310  pr2nelem  7311  sumpr  11774  setsfun0  12918  setscom  12922  perfectlem2  15522
  Copyright terms: Public domain W3C validator