ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashprg GIF version

Theorem hashprg 10900
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashprg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))

Proof of Theorem hashprg
StepHypRef Expression
1 simplr 528 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐵𝑊)
2 snfig 6873 . . . . . 6 (𝐴𝑉 → {𝐴} ∈ Fin)
32ad2antrr 488 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {𝐴} ∈ Fin)
4 elsni 3640 . . . . . . . 8 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
54eqcomd 2202 . . . . . . 7 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
65necon3ai 2416 . . . . . 6 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
76adantl 277 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ {𝐴})
8 hashunsng 10899 . . . . . 6 (𝐵𝑊 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)))
98imp 124 . . . . 5 ((𝐵𝑊 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
101, 3, 7, 9syl12anc 1247 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
11 hashsng 10890 . . . . . . 7 (𝐴𝑉 → (♯‘{𝐴}) = 1)
1211adantr 276 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) = 1)
1312adantr 276 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴}) = 1)
1413oveq1d 5937 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ((♯‘{𝐴}) + 1) = (1 + 1))
1510, 14eqtrd 2229 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = (1 + 1))
16 df-pr 3629 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1716fveq2i 5561 . . 3 (♯‘{𝐴, 𝐵}) = (♯‘({𝐴} ∪ {𝐵}))
18 df-2 9049 . . 3 2 = (1 + 1)
1915, 17, 183eqtr4g 2254 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
20 1ne2 9197 . . . . . . 7 1 ≠ 2
2120a1i 9 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 1 ≠ 2)
2212, 21eqnetrd 2391 . . . . 5 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) ≠ 2)
23 dfsn2 3636 . . . . . . . 8 {𝐴} = {𝐴, 𝐴}
24 preq2 3700 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
2523, 24eqtr2id 2242 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2625fveq2d 5562 . . . . . 6 (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴}))
2726neeq1d 2385 . . . . 5 (𝐴 = 𝐵 → ((♯‘{𝐴, 𝐵}) ≠ 2 ↔ (♯‘{𝐴}) ≠ 2))
2822, 27syl5ibrcom 157 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) ≠ 2))
2928necon2d 2426 . . 3 ((𝐴𝑉𝐵𝑊) → ((♯‘{𝐴, 𝐵}) = 2 → 𝐴𝐵))
3029imp 124 . 2 (((𝐴𝑉𝐵𝑊) ∧ (♯‘{𝐴, 𝐵}) = 2) → 𝐴𝐵)
3119, 30impbida 596 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  cun 3155  {csn 3622  {cpr 3623  cfv 5258  (class class class)co 5922  Fincfn 6799  1c1 7880   + caddc 7882  2c2 9041  chash 10867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-ihash 10868
This theorem is referenced by:  prhash2ex  10901  fiprsshashgt1  10909
  Copyright terms: Public domain W3C validator