ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashprg GIF version

Theorem hashprg 10049
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashprg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))

Proof of Theorem hashprg
StepHypRef Expression
1 simplr 497 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → 𝐵𝑊)
2 snfig 6459 . . . . . 6 (𝐴𝑉 → {𝐴} ∈ Fin)
32ad2antrr 472 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → {𝐴} ∈ Fin)
4 elsni 3440 . . . . . . . 8 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
54eqcomd 2088 . . . . . . 7 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
65necon3ai 2298 . . . . . 6 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
76adantl 271 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ {𝐴})
8 hashunsng 10048 . . . . . 6 (𝐵𝑊 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)))
98imp 122 . . . . 5 ((𝐵𝑊 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
101, 3, 7, 9syl12anc 1168 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))
11 hashsng 10039 . . . . . . 7 (𝐴𝑉 → (♯‘{𝐴}) = 1)
1211adantr 270 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) = 1)
1312adantr 270 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴}) = 1)
1413oveq1d 5604 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → ((♯‘{𝐴}) + 1) = (1 + 1))
1510, 14eqtrd 2115 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘({𝐴} ∪ {𝐵})) = (1 + 1))
16 df-pr 3429 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1716fveq2i 5254 . . 3 (♯‘{𝐴, 𝐵}) = (♯‘({𝐴} ∪ {𝐵}))
18 df-2 8373 . . 3 2 = (1 + 1)
1915, 17, 183eqtr4g 2140 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
20 1ne2 8513 . . . . . . 7 1 ≠ 2
2120a1i 9 . . . . . 6 ((𝐴𝑉𝐵𝑊) → 1 ≠ 2)
2212, 21eqnetrd 2273 . . . . 5 ((𝐴𝑉𝐵𝑊) → (♯‘{𝐴}) ≠ 2)
23 dfsn2 3436 . . . . . . . 8 {𝐴} = {𝐴, 𝐴}
24 preq2 3494 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
2523, 24syl5req 2128 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2625fveq2d 5255 . . . . . 6 (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴}))
2726neeq1d 2267 . . . . 5 (𝐴 = 𝐵 → ((♯‘{𝐴, 𝐵}) ≠ 2 ↔ (♯‘{𝐴}) ≠ 2))
2822, 27syl5ibrcom 155 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) ≠ 2))
2928necon2d 2308 . . 3 ((𝐴𝑉𝐵𝑊) → ((♯‘{𝐴, 𝐵}) = 2 → 𝐴𝐵))
3029imp 122 . 2 (((𝐴𝑉𝐵𝑊) ∧ (♯‘{𝐴, 𝐵}) = 2) → 𝐴𝐵)
3119, 30impbida 561 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wne 2249  cun 2982  {csn 3422  {cpr 3423  cfv 4967  (class class class)co 5589  Fincfn 6385  1c1 7252   + caddc 7254  2c2 8364  chash 10016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-frec 6086  df-1o 6111  df-oadd 6115  df-er 6220  df-en 6386  df-dom 6387  df-fin 6388  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-inn 8315  df-2 8373  df-n0 8564  df-z 8645  df-uz 8913  df-fz 9318  df-ihash 10017
This theorem is referenced by:  prhash2ex  10050  fiprsshashgt1  10058
  Copyright terms: Public domain W3C validator