ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd1 GIF version

Theorem pcgcd1 12570
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))

Proof of Theorem pcgcd1
StepHypRef Expression
1 oveq2 5942 . . . 4 (𝐵 = 0 → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
21oveq2d 5950 . . 3 (𝐵 = 0 → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐴 gcd 0)))
3 simp2 1000 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
4 gcdid0 12220 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
53, 4syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴))
65oveq2d 5950 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt (abs‘𝐴)))
7 zq 9729 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
8 pcabs 12568 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
97, 8sylan2 286 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
1093adant3 1019 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (abs‘𝐴)) = (𝑃 pCnt 𝐴))
116, 10eqtrd 2237 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
1211adantr 276 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 0)) = (𝑃 pCnt 𝐴))
132, 12sylan9eqr 2259 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ∧ 𝐵 = 0) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
14 simpl1 1002 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℙ)
153adantr 276 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
16 simpl3 1004 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
17 simprr 531 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
18 simpr 110 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
1918necon3ai 2424 . . . . . . . 8 (𝐵 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2017, 19syl 14 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 gcdn0cl 12202 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
2215, 16, 20, 21syl21anc 1248 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
2322nnzd 9476 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
24 gcddvds 12203 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2515, 16, 24syl2anc 411 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2625simpld 112 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∥ 𝐴)
27 pcdvdstr 12569 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∥ 𝐴)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
2814, 23, 15, 26, 27syl13anc 1251 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴))
2915, 7syl 14 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℚ)
30 pcxcl 12553 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
3114, 29, 30syl2anc 411 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ*)
32 pczcl 12540 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
3314, 16, 17, 32syl12anc 1247 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℕ0)
3433nn0red 9331 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℝ)
35 pcge0 12555 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 0 ≤ (𝑃 pCnt 𝐴))
3614, 15, 35syl2anc 411 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 0 ≤ (𝑃 pCnt 𝐴))
37 ge0gtmnf 9927 . . . . . . . . . 10 (((𝑃 pCnt 𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃 pCnt 𝐴)) → -∞ < (𝑃 pCnt 𝐴))
3831, 36, 37syl2anc 411 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → -∞ < (𝑃 pCnt 𝐴))
39 simprl 529 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
40 xrre 9924 . . . . . . . . 9 ((((𝑃 pCnt 𝐴) ∈ ℝ* ∧ (𝑃 pCnt 𝐵) ∈ ℝ) ∧ (-∞ < (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) → (𝑃 pCnt 𝐴) ∈ ℝ)
4131, 34, 38, 39, 40syl22anc 1250 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℝ)
42 pnfnre 8096 . . . . . . . . . . . 12 +∞ ∉ ℝ
4342neli 2472 . . . . . . . . . . 11 ¬ +∞ ∈ ℝ
44 pc0 12546 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
4514, 44syl 14 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 0) = +∞)
4645eleq1d 2273 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 0) ∈ ℝ ↔ +∞ ∈ ℝ))
4743, 46mtbiri 676 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ¬ (𝑃 pCnt 0) ∈ ℝ)
48 oveq2 5942 . . . . . . . . . . . 12 (𝐴 = 0 → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
4948eleq1d 2273 . . . . . . . . . . 11 (𝐴 = 0 → ((𝑃 pCnt 𝐴) ∈ ℝ ↔ (𝑃 pCnt 0) ∈ ℝ))
5049notbid 668 . . . . . . . . . 10 (𝐴 = 0 → (¬ (𝑃 pCnt 𝐴) ∈ ℝ ↔ ¬ (𝑃 pCnt 0) ∈ ℝ))
5147, 50syl5ibrcom 157 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝐴 = 0 → ¬ (𝑃 pCnt 𝐴) ∈ ℝ))
5251necon2ad 2432 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ∈ ℝ → 𝐴 ≠ 0))
5341, 52mpd 13 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
54 pczdvds 12556 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
5514, 15, 53, 54syl12anc 1247 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
56 pczcl 12540 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
5714, 15, 53, 56syl12anc 1247 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
58 pcdvdsb 12562 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
5914, 16, 57, 58syl3anc 1249 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
6039, 59mpbid 147 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
61 prmnn 12351 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6214, 61syl 14 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → 𝑃 ∈ ℕ)
6362, 57nnexpcld 10821 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
6463nnzd 9476 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
65 dvdsgcd 12252 . . . . . . 7 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
6664, 15, 16, 65syl3anc 1249 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
6755, 60, 66mp2and 433 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵))
68 pcdvdsb 12562 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
6914, 23, 57, 68syl3anc 1249 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝐴 gcd 𝐵)))
7067, 69mpbird 167 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))
7114, 22pccld 12542 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℕ0)
7271nn0red 9331 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) ∈ ℝ)
7372, 41letri3d 8170 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴) ↔ ((𝑃 pCnt (𝐴 gcd 𝐵)) ≤ (𝑃 pCnt 𝐴) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 gcd 𝐵)))))
7428, 70, 73mpbir2and 946 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
7574anassrs 400 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) ∧ 𝐵 ≠ 0) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
76 simpl3 1004 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → 𝐵 ∈ ℤ)
77 0zd 9366 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → 0 ∈ ℤ)
78 zdceq 9430 . . . 4 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
7976, 77, 78syl2anc 411 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → DECID 𝐵 = 0)
80 dcne 2386 . . 3 (DECID 𝐵 = 0 ↔ (𝐵 = 0 ∨ 𝐵 ≠ 0))
8179, 80sylib 122 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝐵 = 0 ∨ 𝐵 ≠ 0))
8213, 75, 81mpjaodan 799 1 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1372  wcel 2175  wne 2375   class class class wbr 4043  cfv 5268  (class class class)co 5934  cr 7906  0cc0 7907  +∞cpnf 8086  -∞cmnf 8087  *cxr 8088   < clt 8089  cle 8090  cn 9018  0cn0 9277  cz 9354  cq 9722  cexp 10664  abscabs 11227  cdvds 12017   gcd cgcd 12193  cprime 12348   pCnt cpc 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-er 6610  df-en 6818  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-dvds 12018  df-gcd 12194  df-prm 12349  df-pc 12527
This theorem is referenced by:  pcgcd  12571
  Copyright terms: Public domain W3C validator