| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sniota | GIF version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2066 | . . 3 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | iota1 5265 | . . . . 5 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
| 3 | eqcom 2209 | . . . . 5 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
| 4 | 2, 3 | bitrdi 196 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 5 | abid 2195 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 6 | vex 2779 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elsn 3659 | . . . 4 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) |
| 8 | 4, 5, 7 | 3bitr4g 223 | . . 3 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 9 | 1, 8 | alrimi 1546 | . 2 ⊢ (∃!𝑥𝜑 → ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 10 | nfab1 2352 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 11 | nfiota1 5253 | . . . 4 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
| 12 | 11 | nfsn 3703 | . . 3 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
| 13 | 10, 12 | cleqf 2375 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {(℩𝑥𝜑)} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 14 | 9, 13 | sylibr 134 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃!weu 2055 ∈ wcel 2178 {cab 2193 {csn 3643 ℩cio 5249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 df-iota 5251 |
| This theorem is referenced by: snriota 5952 |
| Copyright terms: Public domain | W3C validator |