| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sniota | GIF version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2065 | . . 3 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | iota1 5246 | . . . . 5 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
| 3 | eqcom 2207 | . . . . 5 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
| 4 | 2, 3 | bitrdi 196 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 5 | abid 2193 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 6 | vex 2775 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elsn 3649 | . . . 4 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) |
| 8 | 4, 5, 7 | 3bitr4g 223 | . . 3 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 9 | 1, 8 | alrimi 1545 | . 2 ⊢ (∃!𝑥𝜑 → ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 10 | nfab1 2350 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 11 | nfiota1 5234 | . . . 4 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
| 12 | 11 | nfsn 3693 | . . 3 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
| 13 | 10, 12 | cleqf 2373 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {(℩𝑥𝜑)} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 14 | 9, 13 | sylibr 134 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃!weu 2054 ∈ wcel 2176 {cab 2191 {csn 3633 ℩cio 5230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5232 |
| This theorem is referenced by: snriota 5929 |
| Copyright terms: Public domain | W3C validator |