| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sniota | GIF version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2088 | . . 3 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | iota1 5293 | . . . . 5 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
| 3 | eqcom 2231 | . . . . 5 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
| 4 | 2, 3 | bitrdi 196 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 5 | abid 2217 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 6 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elsn 3682 | . . . 4 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) |
| 8 | 4, 5, 7 | 3bitr4g 223 | . . 3 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 9 | 1, 8 | alrimi 1568 | . 2 ⊢ (∃!𝑥𝜑 → ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 10 | nfab1 2374 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 11 | nfiota1 5280 | . . . 4 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
| 12 | 11 | nfsn 3726 | . . 3 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
| 13 | 10, 12 | cleqf 2397 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {(℩𝑥𝜑)} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
| 14 | 9, 13 | sylibr 134 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃!weu 2077 ∈ wcel 2200 {cab 2215 {csn 3666 ℩cio 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 |
| This theorem is referenced by: snriota 5986 |
| Copyright terms: Public domain | W3C validator |