ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sniota GIF version

Theorem sniota 5180
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2025 . . 3 𝑥∃!𝑥𝜑
2 iota1 5167 . . . . 5 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
3 eqcom 2167 . . . . 5 ((℩𝑥𝜑) = 𝑥𝑥 = (℩𝑥𝜑))
42, 3bitrdi 195 . . . 4 (∃!𝑥𝜑 → (𝜑𝑥 = (℩𝑥𝜑)))
5 abid 2153 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
6 vex 2729 . . . . 5 𝑥 ∈ V
76elsn 3592 . . . 4 (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑))
84, 5, 73bitr4g 222 . . 3 (∃!𝑥𝜑 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
91, 8alrimi 1510 . 2 (∃!𝑥𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
10 nfab1 2310 . . 3 𝑥{𝑥𝜑}
11 nfiota1 5155 . . . 4 𝑥(℩𝑥𝜑)
1211nfsn 3636 . . 3 𝑥{(℩𝑥𝜑)}
1310, 12cleqf 2333 . 2 ({𝑥𝜑} = {(℩𝑥𝜑)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
149, 13sylibr 133 1 (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343  ∃!weu 2014  wcel 2136  {cab 2151  {csn 3576  cio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153
This theorem is referenced by:  snriota  5827
  Copyright terms: Public domain W3C validator