ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sniota GIF version

Theorem sniota 5309
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2088 . . 3 𝑥∃!𝑥𝜑
2 iota1 5293 . . . . 5 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
3 eqcom 2231 . . . . 5 ((℩𝑥𝜑) = 𝑥𝑥 = (℩𝑥𝜑))
42, 3bitrdi 196 . . . 4 (∃!𝑥𝜑 → (𝜑𝑥 = (℩𝑥𝜑)))
5 abid 2217 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
6 vex 2802 . . . . 5 𝑥 ∈ V
76elsn 3682 . . . 4 (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑))
84, 5, 73bitr4g 223 . . 3 (∃!𝑥𝜑 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
91, 8alrimi 1568 . 2 (∃!𝑥𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
10 nfab1 2374 . . 3 𝑥{𝑥𝜑}
11 nfiota1 5280 . . . 4 𝑥(℩𝑥𝜑)
1211nfsn 3726 . . 3 𝑥{(℩𝑥𝜑)}
1310, 12cleqf 2397 . 2 ({𝑥𝜑} = {(℩𝑥𝜑)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
149, 13sylibr 134 1 (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  ∃!weu 2077  wcel 2200  {cab 2215  {csn 3666  cio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278
This theorem is referenced by:  snriota  5986
  Copyright terms: Public domain W3C validator