![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tz6.12c | GIF version |
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
tz6.12c | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 1985 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
2 | nfeu1 1966 | . . . . . 6 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
3 | nfv 1473 | . . . . . 6 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹‘𝐴) | |
4 | 2, 3 | nfim 1516 | . . . . 5 ⊢ Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
5 | tz6.12-1 5366 | . . . . . . . 8 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
6 | 5 | expcom 115 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹‘𝐴) = 𝑦)) |
7 | breq2 3871 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝑦)) | |
8 | 7 | biimprd 157 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
9 | 6, 8 | syli 37 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
10 | 9 | com12 30 | . . . . 5 ⊢ (𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
11 | 4, 10 | exlimi 1537 | . . . 4 ⊢ (∃𝑦 𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
12 | 1, 11 | mpcom 36 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
13 | 12, 7 | syl5ibcom 154 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
14 | 13, 6 | impbid 128 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1296 ∃wex 1433 ∃!weu 1955 class class class wbr 3867 ‘cfv 5049 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-iota 5014 df-fv 5057 |
This theorem is referenced by: fnbrfvb 5380 |
Copyright terms: Public domain | W3C validator |