Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tz6.12c | GIF version |
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
tz6.12c | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2044 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
2 | nfeu1 2025 | . . . . . 6 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
3 | nfv 1516 | . . . . . 6 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹‘𝐴) | |
4 | 2, 3 | nfim 1560 | . . . . 5 ⊢ Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
5 | tz6.12-1 5513 | . . . . . . . 8 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
6 | 5 | expcom 115 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹‘𝐴) = 𝑦)) |
7 | breq2 3986 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝑦)) | |
8 | 7 | biimprd 157 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
9 | 6, 8 | syli 37 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
10 | 9 | com12 30 | . . . . 5 ⊢ (𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
11 | 4, 10 | exlimi 1582 | . . . 4 ⊢ (∃𝑦 𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
12 | 1, 11 | mpcom 36 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
13 | 12, 7 | syl5ibcom 154 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
14 | 13, 6 | impbid 128 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∃!weu 2014 class class class wbr 3982 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: fnbrfvb 5527 |
Copyright terms: Public domain | W3C validator |