![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tz6.12c | GIF version |
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
tz6.12c | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2068 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
2 | nfeu1 2049 | . . . . . 6 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
3 | nfv 1539 | . . . . . 6 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹‘𝐴) | |
4 | 2, 3 | nfim 1583 | . . . . 5 ⊢ Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
5 | tz6.12-1 5561 | . . . . . . . 8 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
6 | 5 | expcom 116 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹‘𝐴) = 𝑦)) |
7 | breq2 4022 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝑦)) | |
8 | 7 | biimprd 158 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
9 | 6, 8 | syli 37 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
10 | 9 | com12 30 | . . . . 5 ⊢ (𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
11 | 4, 10 | exlimi 1605 | . . . 4 ⊢ (∃𝑦 𝐴𝐹𝑦 → (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
12 | 1, 11 | mpcom 36 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
13 | 12, 7 | syl5ibcom 155 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
14 | 13, 6 | impbid 129 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∃!weu 2038 class class class wbr 4018 ‘cfv 5235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 |
This theorem is referenced by: fnbrfvb 5576 |
Copyright terms: Public domain | W3C validator |