ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmo GIF version

Theorem nfmo 2097
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1512 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 2094 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1404 1 𝑥∃*𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1396  wnf 1506  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  euexex  2163  nfdisjv  4071  reusv1  4549  mosubopt  4784  dffun6f  5331
  Copyright terms: Public domain W3C validator