ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmo GIF version

Theorem nfmo 2039
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1459 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 2036 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1357 1 𝑥∃*𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1349  wnf 1453  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  euexex  2104  nfdisjv  3978  reusv1  4443  mosubopt  4676  dffun6f  5211
  Copyright terms: Public domain W3C validator