ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmo GIF version

Theorem nfmo 2026
Description: Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
nfeu.1 𝑥𝜑
Assertion
Ref Expression
nfmo 𝑥∃*𝑦𝜑

Proof of Theorem nfmo
StepHypRef Expression
1 nftru 1446 . . 3 𝑦
2 nfeu.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmod 2023 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1344 1 𝑥∃*𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1336  wnf 1440  ∃*wmo 2007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010
This theorem is referenced by:  euexex  2091  nfdisjv  3956  reusv1  4420  mosubopt  4653  dffun6f  5185
  Copyright terms: Public domain W3C validator