ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfraldxy GIF version

Theorem nfraldxy 2539
Description: Old name for nfraldw 2538. (Contributed by Jim Kingdon, 29-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfraldxy.2 𝑦𝜑
nfraldxy.3 (𝜑𝑥𝐴)
nfraldxy.4 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfraldxy (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfraldxy
StepHypRef Expression
1 df-ral 2489 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
2 nfraldxy.2 . . 3 𝑦𝜑
3 nfcv 2348 . . . . . 6 𝑥𝑦
43a1i 9 . . . . 5 (𝜑𝑥𝑦)
5 nfraldxy.3 . . . . 5 (𝜑𝑥𝐴)
64, 5nfeld 2364 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfraldxy.4 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfimd 1608 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
92, 8nfald 1783 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝜓))
101, 9nfxfrd 1498 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1483  wcel 2176  wnfc 2335  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489
This theorem is referenced by:  nfraldya  2541  nfralxy  2544  strcollnft  15920
  Copyright terms: Public domain W3C validator