![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfraldxy | GIF version |
Description: Old name for nfraldw 2509. (Contributed by Jim Kingdon, 29-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfraldxy.2 | ⊢ Ⅎ𝑦𝜑 |
nfraldxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldxy.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfraldxy | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2460 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | nfraldxy.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
5 | nfraldxy.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | 4, 5 | nfeld 2335 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfraldxy.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
8 | 6, 7 | nfimd 1585 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
9 | 2, 8 | nfald 1760 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
10 | 1, 9 | nfxfrd 1475 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 |
This theorem is referenced by: nfraldya 2512 nfralxy 2515 strcollnft 14876 |
Copyright terms: Public domain | W3C validator |