| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfraldxy | GIF version | ||
| Description: Old name for nfraldw 2562. (Contributed by Jim Kingdon, 29-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfraldxy.2 | ⊢ Ⅎ𝑦𝜑 |
| nfraldxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldxy.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfraldxy | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
| 2 | nfraldxy.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcv 2372 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
| 5 | nfraldxy.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | 4, 5 | nfeld 2388 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfraldxy.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfimd 1631 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
| 9 | 2, 8 | nfald 1806 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
| 10 | 1, 9 | nfxfrd 1521 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: nfraldya 2565 nfralxy 2568 strcollnft 16305 |
| Copyright terms: Public domain | W3C validator |