Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfraldya | GIF version |
Description: Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfraldxy 2503 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfraldya.2 | ⊢ Ⅎ𝑦𝜑 |
nfraldya.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldya.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfraldya | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | sbim 1946 | . . . . . 6 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) | |
3 | clelsb1 2275 | . . . . . . 7 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
4 | 3 | imbi1i 237 | . . . . . 6 ⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐴 → [𝑧 / 𝑦]𝜓) ↔ (𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
5 | 2, 4 | bitri 183 | . . . . 5 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ (𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
6 | 5 | albii 1463 | . . . 4 ⊢ (∀𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧(𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
7 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 → 𝜓) | |
8 | 7 | sb8 1849 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓)) |
9 | df-ral 2453 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧(𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) | |
10 | 6, 8, 9 | 3bitr4i 211 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
11 | nfv 1521 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
12 | nfraldya.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
13 | nfraldya.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
14 | nfraldya.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
15 | 13, 14 | nfsbd 1970 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
16 | 11, 12, 15 | nfraldxy 2503 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
17 | 10, 16 | nfxfrd 1468 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
18 | 1, 17 | nfxfrd 1468 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 [wsb 1755 ∈ wcel 2141 Ⅎwnfc 2299 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: nfralya 2510 |
Copyright terms: Public domain | W3C validator |