| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfraldya | GIF version | ||
| Description: Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfraldxy 2540 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
| Ref | Expression |
|---|---|
| nfraldya.2 | ⊢ Ⅎ𝑦𝜑 |
| nfraldya.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldya.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfraldya | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2490 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
| 2 | sbim 1982 | . . . . . 6 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) | |
| 3 | clelsb1 2311 | . . . . . . 7 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
| 4 | 3 | imbi1i 238 | . . . . . 6 ⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐴 → [𝑧 / 𝑦]𝜓) ↔ (𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
| 5 | 2, 4 | bitri 184 | . . . . 5 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ (𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
| 6 | 5 | albii 1494 | . . . 4 ⊢ (∀𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧(𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
| 7 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 → 𝜓) | |
| 8 | 7 | sb8 1880 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓)) |
| 9 | df-ral 2490 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧(𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) | |
| 10 | 6, 8, 9 | 3bitr4i 212 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
| 11 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 12 | nfraldya.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 13 | nfraldya.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 14 | nfraldya.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 15 | 13, 14 | nfsbd 2006 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 16 | 11, 12, 15 | nfraldxy 2540 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
| 17 | 10, 16 | nfxfrd 1499 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
| 18 | 1, 17 | nfxfrd 1499 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 [wsb 1786 ∈ wcel 2177 Ⅎwnfc 2336 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 |
| This theorem is referenced by: nfralya 2547 |
| Copyright terms: Public domain | W3C validator |