![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfraldya | GIF version |
Description: Not-free for restricted universal quantification where 𝑦 and 𝐴 are distinct. See nfraldxy 2523 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfraldya.2 | ⊢ Ⅎ𝑦𝜑 |
nfraldya.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldya.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfraldya | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2473 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | sbim 1965 | . . . . . 6 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) | |
3 | clelsb1 2294 | . . . . . . 7 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
4 | 3 | imbi1i 238 | . . . . . 6 ⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐴 → [𝑧 / 𝑦]𝜓) ↔ (𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
5 | 2, 4 | bitri 184 | . . . . 5 ⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ (𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
6 | 5 | albii 1481 | . . . 4 ⊢ (∀𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧(𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) |
7 | nfv 1539 | . . . . 5 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 → 𝜓) | |
8 | 7 | sb8 1867 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧[𝑧 / 𝑦](𝑦 ∈ 𝐴 → 𝜓)) |
9 | df-ral 2473 | . . . 4 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧(𝑧 ∈ 𝐴 → [𝑧 / 𝑦]𝜓)) | |
10 | 6, 8, 9 | 3bitr4i 212 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝜓) ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
11 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
12 | nfraldya.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
13 | nfraldya.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
14 | nfraldya.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
15 | 13, 14 | nfsbd 1989 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
16 | 11, 12, 15 | nfraldxy 2523 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑧 ∈ 𝐴 [𝑧 / 𝑦]𝜓) |
17 | 10, 16 | nfxfrd 1486 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
18 | 1, 17 | nfxfrd 1486 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 [wsb 1773 ∈ wcel 2160 Ⅎwnfc 2319 ∀wral 2468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 |
This theorem is referenced by: nfralya 2530 |
Copyright terms: Public domain | W3C validator |