Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrexxy | GIF version |
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2511 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexxy | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1459 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdxy 2504 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1357 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1349 Ⅎwnf 1453 Ⅎwnfc 2299 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 |
This theorem is referenced by: r19.12 2576 sbcrext 3032 nfuni 3802 nfiunxy 3899 rexxpf 4758 abrexex2g 6099 abrexex2 6103 nfrecs 6286 fimaxre2 11190 nfsum 11320 nfcprod1 11517 nfcprod 11518 bezoutlemmain 11953 ctiunctlemfo 12394 bj-findis 14014 strcollnfALT 14021 |
Copyright terms: Public domain | W3C validator |