Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrexxy | GIF version |
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2507 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexxy | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1454 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdxy 2500 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1352 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1344 Ⅎwnf 1448 Ⅎwnfc 2295 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 |
This theorem is referenced by: r19.12 2572 sbcrext 3028 nfuni 3795 nfiunxy 3892 rexxpf 4751 abrexex2g 6088 abrexex2 6092 nfrecs 6275 fimaxre2 11168 nfsum 11298 nfcprod1 11495 nfcprod 11496 bezoutlemmain 11931 ctiunctlemfo 12372 bj-findis 13861 strcollnfALT 13868 |
Copyright terms: Public domain | W3C validator |