Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrexxy | GIF version |
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2516 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexxy | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1464 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdxy 2509 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1362 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1354 Ⅎwnf 1458 Ⅎwnfc 2304 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 |
This theorem is referenced by: r19.12 2581 sbcrext 3038 nfuni 3811 nfiunxy 3908 rexxpf 4767 abrexex2g 6111 abrexex2 6115 nfrecs 6298 fimaxre2 11201 nfsum 11331 nfcprod1 11528 nfcprod 11529 bezoutlemmain 11964 ctiunctlemfo 12405 bj-findis 14271 strcollnfALT 14278 |
Copyright terms: Public domain | W3C validator |