ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexxy GIF version

Theorem nfrexxy 2514
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2516 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfralxy.1 𝑥𝐴
nfralxy.2 𝑥𝜑
Assertion
Ref Expression
nfrexxy 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrexxy
StepHypRef Expression
1 nftru 1464 . . 3 𝑦
2 nfralxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrexdxy 2509 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1362 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1354  wnf 1458  wnfc 2304  wrex 2454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-17 1524  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459
This theorem is referenced by:  r19.12  2581  sbcrext  3038  nfuni  3811  nfiunxy  3908  rexxpf  4767  abrexex2g  6111  abrexex2  6115  nfrecs  6298  fimaxre2  11201  nfsum  11331  nfcprod1  11528  nfcprod  11529  bezoutlemmain  11964  ctiunctlemfo  12405  bj-findis  14271  strcollnfALT  14278
  Copyright terms: Public domain W3C validator