Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3149 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
3 | sstr2 3149 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
5 | 2, 4 | anim12i 336 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
6 | eqss 3157 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
7 | dfbi2 386 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
8 | 5, 6, 7 | 3imtr4i 200 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseq12 3167 sseq2i 3169 sseq2d 3172 sseqtrid 3192 nssne1 3200 sseq0 3450 un00 3455 pweq 3562 ssintab 3841 ssintub 3842 intmin 3844 treq 4086 ssexg 4121 exmidundif 4185 frforeq3 4325 frirrg 4328 iunpw 4458 ordtri2orexmid 4500 ontr2exmid 4502 onsucsssucexmid 4504 ordtri2or2exmid 4548 ontri2orexmidim 4549 fununi 5256 funcnvuni 5257 feq3 5322 ssimaexg 5548 nnawordex 6496 ereq1 6508 xpider 6572 domeng 6718 ssfiexmid 6842 fisseneq 6897 sbthlemi4 6925 sbthlemi5 6926 acfun 7163 onntri45 7197 ccfunen 7205 fprodssdc 11531 basis2 12686 eltg2 12693 clsval 12751 ntrcls0 12771 isnei 12784 neiint 12785 neipsm 12794 opnneissb 12795 opnssneib 12796 innei 12803 icnpimaex 12851 cnptoprest2 12880 neitx 12908 txcnp 12911 blssps 13067 blss 13068 metss 13134 metrest 13146 metcnp3 13151 bdssexg 13786 bj-nntrans 13833 bj-omtrans 13838 |
Copyright terms: Public domain | W3C validator |