| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3204 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
| 3 | sstr2 3204 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
| 6 | eqss 3212 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sseq12 3222 sseq2i 3224 sseq2d 3227 sseqtrid 3247 nssne1 3255 sseq0 3506 un00 3511 pweq 3623 ssintab 3907 ssintub 3908 intmin 3910 treq 4155 ssexg 4190 exmidundif 4257 frforeq3 4401 frirrg 4404 iunpw 4534 ordtri2orexmid 4578 ontr2exmid 4580 onsucsssucexmid 4582 ordtri2or2exmid 4626 ontri2orexmidim 4627 iotaexab 5258 fununi 5350 funcnvuni 5351 feq3 5419 ssimaexg 5653 nnawordex 6627 ereq1 6639 xpider 6705 domeng 6853 ssfiexmid 6987 fisseneq 7045 sbthlemi4 7076 sbthlemi5 7077 nninfninc 7239 acfun 7334 onntri45 7368 ccfunen 7391 fprodssdc 11971 lspf 14221 lspval 14222 basis2 14590 eltg2 14595 clsval 14653 ntrcls0 14673 isnei 14686 neiint 14687 neipsm 14696 opnneissb 14697 opnssneib 14698 innei 14705 icnpimaex 14753 cnptoprest2 14782 neitx 14810 txcnp 14813 blssps 14969 blss 14970 metss 15036 metrest 15048 metcnp3 15053 bdssexg 15974 bj-nntrans 16021 bj-omtrans 16026 |
| Copyright terms: Public domain | W3C validator |