| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
| 3 | sstr2 3231 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
| 6 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12 3249 sseq2i 3251 sseq2d 3254 sseqtrid 3274 nssne1 3282 sseq0 3533 un00 3538 pweq 3652 ssintab 3939 ssintub 3940 intmin 3942 treq 4187 ssexg 4222 exmidundif 4289 frforeq3 4435 frirrg 4438 iunpw 4568 ordtri2orexmid 4612 ontr2exmid 4614 onsucsssucexmid 4616 ordtri2or2exmid 4660 ontri2orexmidim 4661 iotaexab 5293 fununi 5385 funcnvuni 5386 feq3 5454 ssimaexg 5689 nnawordex 6665 ereq1 6677 xpider 6743 domeng 6891 ssfiexmid 7026 fisseneq 7084 sbthlemi4 7115 sbthlemi5 7116 nninfninc 7278 acfun 7377 onntri45 7414 ccfunen 7438 fprodssdc 12087 lspf 14338 lspval 14339 basis2 14707 eltg2 14712 clsval 14770 ntrcls0 14790 isnei 14803 neiint 14804 neipsm 14813 opnneissb 14814 opnssneib 14815 innei 14822 icnpimaex 14870 cnptoprest2 14899 neitx 14927 txcnp 14930 blssps 15086 blss 15087 metss 15153 metrest 15165 metcnp3 15170 upgredgpr 15932 bdssexg 16197 bj-nntrans 16244 bj-omtrans 16249 |
| Copyright terms: Public domain | W3C validator |