| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3190 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
| 3 | sstr2 3190 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
| 6 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12 3208 sseq2i 3210 sseq2d 3213 sseqtrid 3233 nssne1 3241 sseq0 3492 un00 3497 pweq 3608 ssintab 3891 ssintub 3892 intmin 3894 treq 4137 ssexg 4172 exmidundif 4239 frforeq3 4382 frirrg 4385 iunpw 4515 ordtri2orexmid 4559 ontr2exmid 4561 onsucsssucexmid 4563 ordtri2or2exmid 4607 ontri2orexmidim 4608 iotaexab 5237 fununi 5326 funcnvuni 5327 feq3 5392 ssimaexg 5623 nnawordex 6587 ereq1 6599 xpider 6665 domeng 6811 ssfiexmid 6937 fisseneq 6995 sbthlemi4 7026 sbthlemi5 7027 nninfninc 7189 acfun 7274 onntri45 7308 ccfunen 7331 fprodssdc 11755 lspf 13945 lspval 13946 basis2 14284 eltg2 14289 clsval 14347 ntrcls0 14367 isnei 14380 neiint 14381 neipsm 14390 opnneissb 14391 opnssneib 14392 innei 14399 icnpimaex 14447 cnptoprest2 14476 neitx 14504 txcnp 14507 blssps 14663 blss 14664 metss 14730 metrest 14742 metcnp3 14747 bdssexg 15550 bj-nntrans 15597 bj-omtrans 15602 |
| Copyright terms: Public domain | W3C validator |