| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
| 3 | sstr2 3231 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
| 6 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12 3249 sseq2i 3251 sseq2d 3254 sseqtrid 3274 nssne1 3282 sseq0 3533 un00 3538 pweq 3652 ssintab 3940 ssintub 3941 intmin 3943 treq 4188 ssexg 4223 exmidundif 4290 frforeq3 4438 frirrg 4441 iunpw 4571 ordtri2orexmid 4615 ontr2exmid 4617 onsucsssucexmid 4619 ordtri2or2exmid 4663 ontri2orexmidim 4664 iotaexab 5297 fununi 5389 funcnvuni 5390 feq3 5458 ssimaexg 5698 nnawordex 6683 ereq1 6695 xpider 6761 domeng 6909 ssfiexmid 7046 fisseneq 7104 sbthlemi4 7135 sbthlemi5 7136 nninfninc 7298 acfun 7397 onntri45 7434 ccfunen 7458 fprodssdc 12109 lspf 14361 lspval 14362 basis2 14730 eltg2 14735 clsval 14793 ntrcls0 14813 isnei 14826 neiint 14827 neipsm 14836 opnneissb 14837 opnssneib 14838 innei 14845 icnpimaex 14893 cnptoprest2 14922 neitx 14950 txcnp 14953 blssps 15109 blss 15110 metss 15176 metrest 15188 metcnp3 15193 upgredgpr 15955 wlkvtxiedg 16066 wlkvtxiedgg 16067 wlkres 16098 bdssexg 16291 bj-nntrans 16338 bj-omtrans 16343 |
| Copyright terms: Public domain | W3C validator |