![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3187 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
3 | sstr2 3187 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
6 | eqss 3195 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sseq12 3205 sseq2i 3207 sseq2d 3210 sseqtrid 3230 nssne1 3238 sseq0 3489 un00 3494 pweq 3605 ssintab 3888 ssintub 3889 intmin 3891 treq 4134 ssexg 4169 exmidundif 4236 frforeq3 4379 frirrg 4382 iunpw 4512 ordtri2orexmid 4556 ontr2exmid 4558 onsucsssucexmid 4560 ordtri2or2exmid 4604 ontri2orexmidim 4605 iotaexab 5234 fununi 5323 funcnvuni 5324 feq3 5389 ssimaexg 5620 nnawordex 6584 ereq1 6596 xpider 6662 domeng 6808 ssfiexmid 6934 fisseneq 6990 sbthlemi4 7021 sbthlemi5 7022 nninfninc 7184 acfun 7269 onntri45 7303 ccfunen 7326 fprodssdc 11736 lspf 13888 lspval 13889 basis2 14227 eltg2 14232 clsval 14290 ntrcls0 14310 isnei 14323 neiint 14324 neipsm 14333 opnneissb 14334 opnssneib 14335 innei 14342 icnpimaex 14390 cnptoprest2 14419 neitx 14447 txcnp 14450 blssps 14606 blss 14607 metss 14673 metrest 14685 metcnp3 14690 bdssexg 15466 bj-nntrans 15513 bj-omtrans 15518 |
Copyright terms: Public domain | W3C validator |