![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3186 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
3 | sstr2 3186 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
6 | eqss 3194 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sseq12 3204 sseq2i 3206 sseq2d 3209 sseqtrid 3229 nssne1 3237 sseq0 3488 un00 3493 pweq 3604 ssintab 3887 ssintub 3888 intmin 3890 treq 4133 ssexg 4168 exmidundif 4235 frforeq3 4378 frirrg 4381 iunpw 4511 ordtri2orexmid 4555 ontr2exmid 4557 onsucsssucexmid 4559 ordtri2or2exmid 4603 ontri2orexmidim 4604 iotaexab 5233 fununi 5322 funcnvuni 5323 feq3 5388 ssimaexg 5619 nnawordex 6582 ereq1 6594 xpider 6660 domeng 6806 ssfiexmid 6932 fisseneq 6988 sbthlemi4 7019 sbthlemi5 7020 nninfninc 7182 acfun 7267 onntri45 7301 ccfunen 7324 fprodssdc 11733 lspf 13885 lspval 13886 basis2 14216 eltg2 14221 clsval 14279 ntrcls0 14299 isnei 14312 neiint 14313 neipsm 14322 opnneissb 14323 opnssneib 14324 innei 14331 icnpimaex 14379 cnptoprest2 14408 neitx 14436 txcnp 14439 blssps 14595 blss 14596 metss 14662 metrest 14674 metcnp3 14679 bdssexg 15396 bj-nntrans 15443 bj-omtrans 15448 |
Copyright terms: Public domain | W3C validator |