Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3154 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
3 | sstr2 3154 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
5 | 2, 4 | anim12i 336 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
6 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
7 | dfbi2 386 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
8 | 5, 6, 7 | 3imtr4i 200 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseq12 3172 sseq2i 3174 sseq2d 3177 sseqtrid 3197 nssne1 3205 sseq0 3456 un00 3461 pweq 3569 ssintab 3848 ssintub 3849 intmin 3851 treq 4093 ssexg 4128 exmidundif 4192 frforeq3 4332 frirrg 4335 iunpw 4465 ordtri2orexmid 4507 ontr2exmid 4509 onsucsssucexmid 4511 ordtri2or2exmid 4555 ontri2orexmidim 4556 fununi 5266 funcnvuni 5267 feq3 5332 ssimaexg 5558 nnawordex 6508 ereq1 6520 xpider 6584 domeng 6730 ssfiexmid 6854 fisseneq 6909 sbthlemi4 6937 sbthlemi5 6938 acfun 7184 onntri45 7218 ccfunen 7226 fprodssdc 11553 basis2 12840 eltg2 12847 clsval 12905 ntrcls0 12925 isnei 12938 neiint 12939 neipsm 12948 opnneissb 12949 opnssneib 12950 innei 12957 icnpimaex 13005 cnptoprest2 13034 neitx 13062 txcnp 13065 blssps 13221 blss 13222 metss 13288 metrest 13300 metcnp3 13305 bdssexg 13939 bj-nntrans 13986 bj-omtrans 13991 |
Copyright terms: Public domain | W3C validator |