| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
| 3 | sstr2 3191 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
| 5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
| 6 | eqss 3199 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
| 8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12 3209 sseq2i 3211 sseq2d 3214 sseqtrid 3234 nssne1 3242 sseq0 3493 un00 3498 pweq 3609 ssintab 3892 ssintub 3893 intmin 3895 treq 4138 ssexg 4173 exmidundif 4240 frforeq3 4383 frirrg 4386 iunpw 4516 ordtri2orexmid 4560 ontr2exmid 4562 onsucsssucexmid 4564 ordtri2or2exmid 4608 ontri2orexmidim 4609 iotaexab 5238 fununi 5327 funcnvuni 5328 feq3 5395 ssimaexg 5626 nnawordex 6596 ereq1 6608 xpider 6674 domeng 6820 ssfiexmid 6946 fisseneq 7004 sbthlemi4 7035 sbthlemi5 7036 nninfninc 7198 acfun 7292 onntri45 7326 ccfunen 7349 fprodssdc 11774 lspf 14023 lspval 14024 basis2 14392 eltg2 14397 clsval 14455 ntrcls0 14475 isnei 14488 neiint 14489 neipsm 14498 opnneissb 14499 opnssneib 14500 innei 14507 icnpimaex 14555 cnptoprest2 14584 neitx 14612 txcnp 14615 blssps 14771 blss 14772 metss 14838 metrest 14850 metcnp3 14855 bdssexg 15658 bj-nntrans 15705 bj-omtrans 15710 |
| Copyright terms: Public domain | W3C validator |