![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3163 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
3 | sstr2 3163 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
5 | 2, 4 | anim12i 338 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
6 | eqss 3171 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
7 | dfbi2 388 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
8 | 5, 6, 7 | 3imtr4i 201 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ⊆ wss 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3136 df-ss 3143 |
This theorem is referenced by: sseq12 3181 sseq2i 3183 sseq2d 3186 sseqtrid 3206 nssne1 3214 sseq0 3465 un00 3470 pweq 3579 ssintab 3862 ssintub 3863 intmin 3865 treq 4108 ssexg 4143 exmidundif 4207 frforeq3 4348 frirrg 4351 iunpw 4481 ordtri2orexmid 4523 ontr2exmid 4525 onsucsssucexmid 4527 ordtri2or2exmid 4571 ontri2orexmidim 4572 fununi 5285 funcnvuni 5286 feq3 5351 ssimaexg 5579 nnawordex 6530 ereq1 6542 xpider 6606 domeng 6752 ssfiexmid 6876 fisseneq 6931 sbthlemi4 6959 sbthlemi5 6960 acfun 7206 onntri45 7240 ccfunen 7263 fprodssdc 11598 basis2 13551 eltg2 13556 clsval 13614 ntrcls0 13634 isnei 13647 neiint 13648 neipsm 13657 opnneissb 13658 opnssneib 13659 innei 13666 icnpimaex 13714 cnptoprest2 13743 neitx 13771 txcnp 13774 blssps 13930 blss 13931 metss 13997 metrest 14009 metcnp3 14014 bdssexg 14659 bj-nntrans 14706 bj-omtrans 14711 |
Copyright terms: Public domain | W3C validator |