![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2 | GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
sseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3046 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
3 | sstr2 3046 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴)) |
5 | 2, 4 | anim12i 332 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) |
6 | eqss 3054 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
7 | dfbi2 381 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) ↔ ((𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵) ∧ (𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴))) | |
8 | 5, 6, 7 | 3imtr4i 200 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ⊆ wss 3013 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-11 1449 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-in 3019 df-ss 3026 |
This theorem is referenced by: sseq12 3064 sseq2i 3066 sseq2d 3069 syl5sseq 3089 nssne1 3097 sseq0 3343 un00 3348 pweq 3452 ssintab 3727 ssintub 3728 intmin 3730 treq 3964 ssexg 3999 exmidundif 4058 frforeq3 4198 frirrg 4201 iunpw 4330 ordtri2orexmid 4367 ontr2exmid 4369 onsucsssucexmid 4371 ordtri2or2exmid 4415 fununi 5116 funcnvuni 5117 feq3 5181 ssimaexg 5401 nnawordex 6327 ereq1 6339 xpider 6403 domeng 6549 ssfiexmid 6672 fisseneq 6722 sbthlemi4 6749 sbthlemi5 6750 basis2 11898 eltg2 11905 clsval 11963 ntrcls0 11983 isnei 11996 neiint 11997 neipsm 12006 opnneissb 12007 opnssneib 12008 innei 12015 icnpimaex 12062 cnptoprest2 12091 blssps 12213 blss 12214 metss 12280 metrest 12292 metcnp3 12293 bdssexg 12512 bj-nntrans 12563 bj-omtrans 12568 |
Copyright terms: Public domain | W3C validator |