ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2i GIF version

Theorem eqimss2i 3210
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 𝐴 = 𝐵
Assertion
Ref Expression
eqimss2i 𝐵𝐴

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3173 . 2 𝐵𝐵
2 eqimssi.1 . 2 𝐴 = 𝐵
31, 2sseqtrri 3188 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by:  cocnvres  5145  cocnvss  5146  fsum3  11363  prodfclim1  11520  ef0lem  11636  restid  12630  hmeores  13395
  Copyright terms: Public domain W3C validator