| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss2i | GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3212 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3227 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: cocnvres 5206 cocnvss 5207 fsum3 11640 prodfclim1 11797 ef0lem 11913 restid 13024 hmeores 14729 struct2slots2dom 15577 struct2griedg 15585 |
| Copyright terms: Public domain | W3C validator |