![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ap0 | GIF version |
Description: One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
Ref | Expression |
---|---|
1ap0 | ⊢ 1 # 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1 8146 | . . 3 ⊢ 0 < 1 | |
2 | 1 | olci 733 | . 2 ⊢ (1 < 0 ∨ 0 < 1) |
3 | 1re 8018 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 0re 8019 | . . 3 ⊢ 0 ∈ ℝ | |
5 | reaplt 8607 | . . 3 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) → (1 # 0 ↔ (1 < 0 ∨ 0 < 1))) | |
6 | 3, 4, 5 | mp2an 426 | . 2 ⊢ (1 # 0 ↔ (1 < 0 ∨ 0 < 1)) |
7 | 2, 6 | mpbir 146 | 1 ⊢ 1 # 0 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 1c1 7873 < clt 8054 # cap 8600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 |
This theorem is referenced by: recapb 8690 recap0 8704 div1 8722 recdivap 8737 divdivap1 8742 divdivap2 8743 neg1ap0 9091 iap0 9205 qreccl 9707 expcl2lemap 10622 m1expcl2 10632 expclzaplem 10634 1exp 10639 geo2sum2 11658 geoihalfsum 11665 fprodntrivap 11727 prod0 11728 prod1dc 11729 fprodap0 11764 fprodap0f 11779 efap0 11820 tan0 11874 lgsne0 15154 lgseisenlem1 15186 lgseisenlem2 15187 lgsquadlem1 15191 cvgcmp2nlemabs 15522 trirec0 15534 |
Copyright terms: Public domain | W3C validator |