ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ap0 GIF version

Theorem 1ap0 8733
Description: One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
1ap0 1 # 0

Proof of Theorem 1ap0
StepHypRef Expression
1 0lt1 8269 . . 3 0 < 1
21olci 737 . 2 (1 < 0 ∨ 0 < 1)
3 1re 8141 . . 3 1 ∈ ℝ
4 0re 8142 . . 3 0 ∈ ℝ
5 reaplt 8731 . . 3 ((1 ∈ ℝ ∧ 0 ∈ ℝ) → (1 # 0 ↔ (1 < 0 ∨ 0 < 1)))
63, 4, 5mp2an 426 . 2 (1 # 0 ↔ (1 < 0 ∨ 0 < 1))
72, 6mpbir 146 1 1 # 0
Colors of variables: wff set class
Syntax hints:  wb 105  wo 713  wcel 2200   class class class wbr 4082  cr 7994  0cc0 7995  1c1 7996   < clt 8177   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  recapb  8814  recap0  8828  div1  8846  recdivap  8861  divdivap1  8866  divdivap2  8867  neg1ap0  9215  iap0  9330  qreccl  9833  expcl2lemap  10768  m1expcl2  10778  expclzaplem  10780  1exp  10785  geo2sum2  12021  geoihalfsum  12028  fprodntrivap  12090  prod0  12091  prod1dc  12092  fprodap0  12127  fprodap0f  12142  efap0  12183  tan0  12237  1sgm2ppw  15663  lgsne0  15711  lgseisenlem1  15743  lgseisenlem2  15744  lgsquadlem1  15750  cvgcmp2nlemabs  16359  trirec0  16371
  Copyright terms: Public domain W3C validator