| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnf0xnn0 | GIF version | ||
| Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . 3 ⊢ +∞ = +∞ | |
| 2 | 1 | olci 734 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
| 3 | elxnn0 9375 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ +∞ ∈ ℕ0* |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ∈ wcel 2177 +∞cpnf 8119 ℕ0cn0 9310 ℕ0*cxnn0 9373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-un 4487 ax-cnex 8031 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-uni 3856 df-pnf 8124 df-xr 8126 df-xnn0 9374 |
| This theorem is referenced by: inftonninf 10604 nninfctlemfo 12431 pcxnn0cl 12703 |
| Copyright terms: Public domain | W3C validator |