Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnf0xnn0 | GIF version |
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . 3 ⊢ +∞ = +∞ | |
2 | 1 | olci 722 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
3 | elxnn0 9138 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
4 | 2, 3 | mpbir 145 | 1 ⊢ +∞ ∈ ℕ0* |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1335 ∈ wcel 2128 +∞cpnf 7892 ℕ0cn0 9073 ℕ0*cxnn0 9136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-un 4392 ax-cnex 7806 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-pnf 7897 df-xr 7899 df-xnn0 9137 |
This theorem is referenced by: inftonninf 10322 |
Copyright terms: Public domain | W3C validator |