ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnf0xnn0 GIF version

Theorem pnf0xnn0 9435
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
pnf0xnn0 +∞ ∈ ℕ0*

Proof of Theorem pnf0xnn0
StepHypRef Expression
1 eqid 2229 . . 3 +∞ = +∞
21olci 737 . 2 (+∞ ∈ ℕ0 ∨ +∞ = +∞)
3 elxnn0 9430 . 2 (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞))
42, 3mpbir 146 1 +∞ ∈ ℕ0*
Colors of variables: wff set class
Syntax hints:  wo 713   = wceq 1395  wcel 2200  +∞cpnf 8174  0cn0 9365  0*cxnn0 9428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523  ax-cnex 8086
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-pnf 8179  df-xr 8181  df-xnn0 9429
This theorem is referenced by:  inftonninf  10659  nninfctlemfo  12556  pcxnn0cl  12828
  Copyright terms: Public domain W3C validator