ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucidg GIF version

Theorem sucidg 4468
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Assertion
Ref Expression
sucidg (𝐴𝑉𝐴 ∈ suc 𝐴)

Proof of Theorem sucidg
StepHypRef Expression
1 eqid 2206 . . 3 𝐴 = 𝐴
21olci 734 . 2 (𝐴𝐴𝐴 = 𝐴)
3 elsucg 4456 . 2 (𝐴𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴𝐴𝐴 = 𝐴)))
42, 3mpbiri 168 1 (𝐴𝑉𝐴 ∈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  suc csuc 4417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3172  df-sn 3641  df-suc 4423
This theorem is referenced by:  sucid  4469  nsuceq0g  4470  trsuc  4474  sucssel  4476  ordsucg  4555  sucunielr  4563  suc11g  4610  nlimsucg  4619  peano2b  4668  omsinds  4675  nnpredlt  4677  frecsuclem  6502  phplem4dom  6971  phplem4on  6976  dif1en  6988  fin0  6994  fin0or  6995  fidcenumlemrks  7067  bj-peano4  16005
  Copyright terms: Public domain W3C validator