ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucidg GIF version

Theorem sucidg 4416
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Assertion
Ref Expression
sucidg (𝐴𝑉𝐴 ∈ suc 𝐴)

Proof of Theorem sucidg
StepHypRef Expression
1 eqid 2177 . . 3 𝐴 = 𝐴
21olci 732 . 2 (𝐴𝐴𝐴 = 𝐴)
3 elsucg 4404 . 2 (𝐴𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴𝐴𝐴 = 𝐴)))
42, 3mpbiri 168 1 (𝐴𝑉𝐴 ∈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708   = wceq 1353  wcel 2148  suc csuc 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-sn 3598  df-suc 4371
This theorem is referenced by:  sucid  4417  nsuceq0g  4418  trsuc  4422  sucssel  4424  ordsucg  4501  sucunielr  4509  suc11g  4556  nlimsucg  4565  peano2b  4614  omsinds  4621  nnpredlt  4623  frecsuclem  6406  phplem4dom  6861  phplem4on  6866  dif1en  6878  fin0  6884  fin0or  6885  fidcenumlemrks  6951  bj-peano4  14677
  Copyright terms: Public domain W3C validator