Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucidg | GIF version |
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 722 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) |
3 | elsucg 4382 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 167 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-suc 4349 |
This theorem is referenced by: sucid 4395 nsuceq0g 4396 trsuc 4400 sucssel 4402 ordsucg 4479 sucunielr 4487 suc11g 4534 nlimsucg 4543 peano2b 4592 omsinds 4599 nnpredlt 4601 frecsuclem 6374 phplem4dom 6828 phplem4on 6833 dif1en 6845 fin0 6851 fin0or 6852 fidcenumlemrks 6918 bj-peano4 13837 |
Copyright terms: Public domain | W3C validator |