ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucidg GIF version

Theorem sucidg 4504
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Assertion
Ref Expression
sucidg (𝐴𝑉𝐴 ∈ suc 𝐴)

Proof of Theorem sucidg
StepHypRef Expression
1 eqid 2229 . . 3 𝐴 = 𝐴
21olci 737 . 2 (𝐴𝐴𝐴 = 𝐴)
3 elsucg 4492 . 2 (𝐴𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴𝐴𝐴 = 𝐴)))
42, 3mpbiri 168 1 (𝐴𝑉𝐴 ∈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  suc csuc 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-suc 4459
This theorem is referenced by:  sucid  4505  nsuceq0g  4506  trsuc  4510  sucssel  4512  ordsucg  4591  sucunielr  4599  suc11g  4646  nlimsucg  4655  peano2b  4704  omsinds  4711  nnpredlt  4713  frecsuclem  6542  phplem4dom  7011  phplem4on  7017  dif1en  7029  fin0  7035  fin0or  7036  fidcenumlemrks  7108  bj-peano4  16248
  Copyright terms: Public domain W3C validator