ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucidg GIF version

Theorem sucidg 4452
Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Assertion
Ref Expression
sucidg (𝐴𝑉𝐴 ∈ suc 𝐴)

Proof of Theorem sucidg
StepHypRef Expression
1 eqid 2196 . . 3 𝐴 = 𝐴
21olci 733 . 2 (𝐴𝐴𝐴 = 𝐴)
3 elsucg 4440 . 2 (𝐴𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴𝐴𝐴 = 𝐴)))
42, 3mpbiri 168 1 (𝐴𝑉𝐴 ∈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2167  suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-suc 4407
This theorem is referenced by:  sucid  4453  nsuceq0g  4454  trsuc  4458  sucssel  4460  ordsucg  4539  sucunielr  4547  suc11g  4594  nlimsucg  4603  peano2b  4652  omsinds  4659  nnpredlt  4661  frecsuclem  6473  phplem4dom  6932  phplem4on  6937  dif1en  6949  fin0  6955  fin0or  6956  fidcenumlemrks  7028  bj-peano4  15685
  Copyright terms: Public domain W3C validator