| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sucidg | GIF version | ||
| Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.) | 
| Ref | Expression | 
|---|---|
| sucidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci 733 | . 2 ⊢ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴) | 
| 3 | elsucg 4439 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-suc 4406 | 
| This theorem is referenced by: sucid 4452 nsuceq0g 4453 trsuc 4457 sucssel 4459 ordsucg 4538 sucunielr 4546 suc11g 4593 nlimsucg 4602 peano2b 4651 omsinds 4658 nnpredlt 4660 frecsuclem 6464 phplem4dom 6923 phplem4on 6928 dif1en 6940 fin0 6946 fin0or 6947 fidcenumlemrks 7019 bj-peano4 15601 | 
| Copyright terms: Public domain | W3C validator |