ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1lem GIF version

Theorem odd2np1lem 11860
Description: Lemma for odd2np1 11861. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Distinct variable groups:   𝑘,𝑁   𝑛,𝑁

Proof of Theorem odd2np1lem
Dummy variables 𝑗 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2187 . . . 4 (𝑗 = 0 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 0))
21rexbidv 2478 . . 3 (𝑗 = 0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0))
3 eqeq2 2187 . . . 4 (𝑗 = 0 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 0))
43rexbidv 2478 . . 3 (𝑗 = 0 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0))
52, 4orbi12d 793 . 2 (𝑗 = 0 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)))
6 eqeq2 2187 . . . . 5 (𝑗 = 𝑚 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑚))
76rexbidv 2478 . . . 4 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚))
8 oveq2 5877 . . . . . . 7 (𝑛 = 𝑥 → (2 · 𝑛) = (2 · 𝑥))
98oveq1d 5884 . . . . . 6 (𝑛 = 𝑥 → ((2 · 𝑛) + 1) = ((2 · 𝑥) + 1))
109eqeq1d 2186 . . . . 5 (𝑛 = 𝑥 → (((2 · 𝑛) + 1) = 𝑚 ↔ ((2 · 𝑥) + 1) = 𝑚))
1110cbvrexv 2704 . . . 4 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑚 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚)
127, 11bitrdi 196 . . 3 (𝑗 = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
13 eqeq2 2187 . . . . 5 (𝑗 = 𝑚 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑚))
1413rexbidv 2478 . . . 4 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚))
15 oveq1 5876 . . . . . 6 (𝑘 = 𝑦 → (𝑘 · 2) = (𝑦 · 2))
1615eqeq1d 2186 . . . . 5 (𝑘 = 𝑦 → ((𝑘 · 2) = 𝑚 ↔ (𝑦 · 2) = 𝑚))
1716cbvrexv 2704 . . . 4 (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑚 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)
1814, 17bitrdi 196 . . 3 (𝑗 = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚))
1912, 18orbi12d 793 . 2 (𝑗 = 𝑚 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚)))
20 eqeq2 2187 . . . 4 (𝑗 = (𝑚 + 1) → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
2120rexbidv 2478 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
22 eqeq2 2187 . . . 4 (𝑗 = (𝑚 + 1) → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = (𝑚 + 1)))
2322rexbidv 2478 . . 3 (𝑗 = (𝑚 + 1) → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
2421, 23orbi12d 793 . 2 (𝑗 = (𝑚 + 1) → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
25 eqeq2 2187 . . . 4 (𝑗 = 𝑁 → (((2 · 𝑛) + 1) = 𝑗 ↔ ((2 · 𝑛) + 1) = 𝑁))
2625rexbidv 2478 . . 3 (𝑗 = 𝑁 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
27 eqeq2 2187 . . . 4 (𝑗 = 𝑁 → ((𝑘 · 2) = 𝑗 ↔ (𝑘 · 2) = 𝑁))
2827rexbidv 2478 . . 3 (𝑗 = 𝑁 → (∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
2926, 28orbi12d 793 . 2 (𝑗 = 𝑁 → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑗 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑗) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
30 0z 9253 . . . 4 0 ∈ ℤ
31 2cn 8979 . . . . 5 2 ∈ ℂ
3231mul02i 8337 . . . 4 (0 · 2) = 0
33 oveq1 5876 . . . . . 6 (𝑘 = 0 → (𝑘 · 2) = (0 · 2))
3433eqeq1d 2186 . . . . 5 (𝑘 = 0 → ((𝑘 · 2) = 0 ↔ (0 · 2) = 0))
3534rspcev 2841 . . . 4 ((0 ∈ ℤ ∧ (0 · 2) = 0) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
3630, 32, 35mp2an 426 . . 3 𝑘 ∈ ℤ (𝑘 · 2) = 0
3736olci 732 . 2 (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 0 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 0)
38 orcom 728 . . 3 ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) ↔ (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚))
39 zcn 9247 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
40 mulcom 7931 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) = (2 · 𝑦))
4139, 31, 40sylancl 413 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦 · 2) = (2 · 𝑦))
4241adantl 277 . . . . . . 7 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → (𝑦 · 2) = (2 · 𝑦))
4342eqeq1d 2186 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 ↔ (2 · 𝑦) = 𝑚))
44 eqid 2177 . . . . . . . . 9 ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)
45 oveq2 5877 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (2 · 𝑛) = (2 · 𝑦))
4645oveq1d 5884 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4746eqeq1d 2186 . . . . . . . . . 10 (𝑛 = 𝑦 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)))
4847rspcev 2841 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) + 1) = ((2 · 𝑦) + 1)) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
4944, 48mpan2 425 . . . . . . . 8 (𝑦 ∈ ℤ → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1))
50 oveq1 5876 . . . . . . . . . 10 ((2 · 𝑦) = 𝑚 → ((2 · 𝑦) + 1) = (𝑚 + 1))
5150eqeq2d 2189 . . . . . . . . 9 ((2 · 𝑦) = 𝑚 → (((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5251rexbidv 2478 . . . . . . . 8 ((2 · 𝑦) = 𝑚 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = ((2 · 𝑦) + 1) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5349, 52syl5ibcom 155 . . . . . . 7 (𝑦 ∈ ℤ → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5453adantl 277 . . . . . 6 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((2 · 𝑦) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5543, 54sylbid 150 . . . . 5 ((𝑚 ∈ ℕ0𝑦 ∈ ℤ) → ((𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
5655rexlimdva 2594 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1)))
57 peano2z 9278 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
5857adantl 277 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 + 1) ∈ ℤ)
59 zcn 9247 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
60 mulcom 7931 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑥 · 2) = (2 · 𝑥))
6131, 60mpan2 425 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥 · 2) = (2 · 𝑥))
6231mulid2i 7951 . . . . . . . . . . . . 13 (1 · 2) = 2
6362a1i 9 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (1 · 2) = 2)
6461, 63oveq12d 5887 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + 2))
65 df-2 8967 . . . . . . . . . . . 12 2 = (1 + 1)
6665oveq2i 5880 . . . . . . . . . . 11 ((2 · 𝑥) + 2) = ((2 · 𝑥) + (1 + 1))
6764, 66eqtrdi 2226 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 · 2) + (1 · 2)) = ((2 · 𝑥) + (1 + 1)))
68 ax-1cn 7895 . . . . . . . . . . 11 1 ∈ ℂ
69 adddir 7939 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
7068, 31, 69mp3an23 1329 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = ((𝑥 · 2) + (1 · 2)))
71 mulcl 7929 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
7231, 71mpan 424 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
73 addass 7932 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7468, 68, 73mp3an23 1329 . . . . . . . . . . 11 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7572, 74syl 14 . . . . . . . . . 10 (𝑥 ∈ ℂ → (((2 · 𝑥) + 1) + 1) = ((2 · 𝑥) + (1 + 1)))
7667, 70, 753eqtr4d 2220 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7759, 76syl 14 . . . . . . . 8 (𝑥 ∈ ℤ → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
7877adantl 277 . . . . . . 7 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1))
79 oveq1 5876 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → (𝑘 · 2) = ((𝑥 + 1) · 2))
8079eqeq1d 2186 . . . . . . . 8 (𝑘 = (𝑥 + 1) → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)))
8180rspcev 2841 . . . . . . 7 (((𝑥 + 1) ∈ ℤ ∧ ((𝑥 + 1) · 2) = (((2 · 𝑥) + 1) + 1)) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
8258, 78, 81syl2anc 411 . . . . . 6 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1))
83 oveq1 5876 . . . . . . . 8 (((2 · 𝑥) + 1) = 𝑚 → (((2 · 𝑥) + 1) + 1) = (𝑚 + 1))
8483eqeq2d 2189 . . . . . . 7 (((2 · 𝑥) + 1) = 𝑚 → ((𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ (𝑘 · 2) = (𝑚 + 1)))
8584rexbidv 2478 . . . . . 6 (((2 · 𝑥) + 1) = 𝑚 → (∃𝑘 ∈ ℤ (𝑘 · 2) = (((2 · 𝑥) + 1) + 1) ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8682, 85syl5ibcom 155 . . . . 5 ((𝑚 ∈ ℕ0𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8786rexlimdva 2594 . . . 4 (𝑚 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 → ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1)))
8856, 87orim12d 786 . . 3 (𝑚 ∈ ℕ0 → ((∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚 ∨ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
8938, 88biimtrid 152 . 2 (𝑚 ∈ ℕ0 → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑚 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = 𝑚) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (𝑚 + 1) ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = (𝑚 + 1))))
905, 19, 24, 29, 37, 89nn0ind 9356 1 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  wrex 2456  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  2c2 8959  0cn0 9165  cz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243
This theorem is referenced by:  odd2np1  11861
  Copyright terms: Public domain W3C validator