| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iap0 | GIF version | ||
| Description: The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| iap0 | ⊢ i # 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ap0 8733 | . . . 4 ⊢ 1 # 0 | |
| 2 | 1 | olci 737 | . . 3 ⊢ (0 # 0 ∨ 1 # 0) |
| 3 | 0re 8142 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | 1re 8141 | . . . 4 ⊢ 1 ∈ ℝ | |
| 5 | apreim 8746 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0))) | |
| 6 | 3, 4, 3, 3, 5 | mp4an 427 | . . 3 ⊢ ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0)) |
| 7 | 2, 6 | mpbir 146 | . 2 ⊢ (0 + (i · 1)) # (0 + (i · 0)) |
| 8 | ax-icn 8090 | . . . . 5 ⊢ i ∈ ℂ | |
| 9 | 8 | mulridi 8144 | . . . 4 ⊢ (i · 1) = i |
| 10 | 9 | oveq2i 6011 | . . 3 ⊢ (0 + (i · 1)) = (0 + i) |
| 11 | 8 | addlidi 8285 | . . 3 ⊢ (0 + i) = i |
| 12 | 10, 11 | eqtri 2250 | . 2 ⊢ (0 + (i · 1)) = i |
| 13 | it0e0 9328 | . . . 4 ⊢ (i · 0) = 0 | |
| 14 | 13 | oveq2i 6011 | . . 3 ⊢ (0 + (i · 0)) = (0 + 0) |
| 15 | 00id 8283 | . . 3 ⊢ (0 + 0) = 0 | |
| 16 | 14, 15 | eqtri 2250 | . 2 ⊢ (0 + (i · 0)) = 0 |
| 17 | 7, 12, 16 | 3brtr3i 4111 | 1 ⊢ i # 0 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 0cc0 7995 1c1 7996 ici 7997 + caddc 7998 · cmul 8000 # cap 8724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 |
| This theorem is referenced by: 2muliap0 9331 irec 10856 iexpcyc 10861 imval 11356 imre 11357 reim 11358 crim 11364 cjreb 11372 tanval2ap 12219 tanval3ap 12220 efival 12238 |
| Copyright terms: Public domain | W3C validator |