| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iap0 | GIF version | ||
| Description: The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| iap0 | ⊢ i # 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ap0 8683 | . . . 4 ⊢ 1 # 0 | |
| 2 | 1 | olci 734 | . . 3 ⊢ (0 # 0 ∨ 1 # 0) |
| 3 | 0re 8092 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | 1re 8091 | . . . 4 ⊢ 1 ∈ ℝ | |
| 5 | apreim 8696 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0))) | |
| 6 | 3, 4, 3, 3, 5 | mp4an 427 | . . 3 ⊢ ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0)) |
| 7 | 2, 6 | mpbir 146 | . 2 ⊢ (0 + (i · 1)) # (0 + (i · 0)) |
| 8 | ax-icn 8040 | . . . . 5 ⊢ i ∈ ℂ | |
| 9 | 8 | mulridi 8094 | . . . 4 ⊢ (i · 1) = i |
| 10 | 9 | oveq2i 5968 | . . 3 ⊢ (0 + (i · 1)) = (0 + i) |
| 11 | 8 | addlidi 8235 | . . 3 ⊢ (0 + i) = i |
| 12 | 10, 11 | eqtri 2227 | . 2 ⊢ (0 + (i · 1)) = i |
| 13 | it0e0 9278 | . . . 4 ⊢ (i · 0) = 0 | |
| 14 | 13 | oveq2i 5968 | . . 3 ⊢ (0 + (i · 0)) = (0 + 0) |
| 15 | 00id 8233 | . . 3 ⊢ (0 + 0) = 0 | |
| 16 | 14, 15 | eqtri 2227 | . 2 ⊢ (0 + (i · 0)) = 0 |
| 17 | 7, 12, 16 | 3brtr3i 4080 | 1 ⊢ i # 0 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 0cc0 7945 1c1 7946 ici 7947 + caddc 7948 · cmul 7950 # cap 8674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 |
| This theorem is referenced by: 2muliap0 9281 irec 10806 iexpcyc 10811 imval 11236 imre 11237 reim 11238 crim 11244 cjreb 11252 tanval2ap 12099 tanval3ap 12100 efival 12118 |
| Copyright terms: Public domain | W3C validator |