![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iap0 | GIF version |
Description: The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
iap0 | ⊢ i # 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ap0 8609 | . . . 4 ⊢ 1 # 0 | |
2 | 1 | olci 733 | . . 3 ⊢ (0 # 0 ∨ 1 # 0) |
3 | 0re 8019 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 1re 8018 | . . . 4 ⊢ 1 ∈ ℝ | |
5 | apreim 8622 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0))) | |
6 | 3, 4, 3, 3, 5 | mp4an 427 | . . 3 ⊢ ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0)) |
7 | 2, 6 | mpbir 146 | . 2 ⊢ (0 + (i · 1)) # (0 + (i · 0)) |
8 | ax-icn 7967 | . . . . 5 ⊢ i ∈ ℂ | |
9 | 8 | mulid1i 8021 | . . . 4 ⊢ (i · 1) = i |
10 | 9 | oveq2i 5929 | . . 3 ⊢ (0 + (i · 1)) = (0 + i) |
11 | 8 | addid2i 8162 | . . 3 ⊢ (0 + i) = i |
12 | 10, 11 | eqtri 2214 | . 2 ⊢ (0 + (i · 1)) = i |
13 | it0e0 9203 | . . . 4 ⊢ (i · 0) = 0 | |
14 | 13 | oveq2i 5929 | . . 3 ⊢ (0 + (i · 0)) = (0 + 0) |
15 | 00id 8160 | . . 3 ⊢ (0 + 0) = 0 | |
16 | 14, 15 | eqtri 2214 | . 2 ⊢ (0 + (i · 0)) = 0 |
17 | 7, 12, 16 | 3brtr3i 4058 | 1 ⊢ i # 0 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 ici 7874 + caddc 7875 · cmul 7877 # cap 8600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 |
This theorem is referenced by: 2muliap0 9206 irec 10710 iexpcyc 10715 imval 10994 imre 10995 reim 10996 crim 11002 cjreb 11010 tanval2ap 11856 tanval3ap 11857 efival 11875 |
Copyright terms: Public domain | W3C validator |