![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iap0 | GIF version |
Description: The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
iap0 | ⊢ i # 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ap0 8611 | . . . 4 ⊢ 1 # 0 | |
2 | 1 | olci 733 | . . 3 ⊢ (0 # 0 ∨ 1 # 0) |
3 | 0re 8021 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | 1re 8020 | . . . 4 ⊢ 1 ∈ ℝ | |
5 | apreim 8624 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ∈ ℝ ∧ 0 ∈ ℝ)) → ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0))) | |
6 | 3, 4, 3, 3, 5 | mp4an 427 | . . 3 ⊢ ((0 + (i · 1)) # (0 + (i · 0)) ↔ (0 # 0 ∨ 1 # 0)) |
7 | 2, 6 | mpbir 146 | . 2 ⊢ (0 + (i · 1)) # (0 + (i · 0)) |
8 | ax-icn 7969 | . . . . 5 ⊢ i ∈ ℂ | |
9 | 8 | mulid1i 8023 | . . . 4 ⊢ (i · 1) = i |
10 | 9 | oveq2i 5930 | . . 3 ⊢ (0 + (i · 1)) = (0 + i) |
11 | 8 | addid2i 8164 | . . 3 ⊢ (0 + i) = i |
12 | 10, 11 | eqtri 2214 | . 2 ⊢ (0 + (i · 1)) = i |
13 | it0e0 9206 | . . . 4 ⊢ (i · 0) = 0 | |
14 | 13 | oveq2i 5930 | . . 3 ⊢ (0 + (i · 0)) = (0 + 0) |
15 | 00id 8162 | . . 3 ⊢ (0 + 0) = 0 | |
16 | 14, 15 | eqtri 2214 | . 2 ⊢ (0 + (i · 0)) = 0 |
17 | 7, 12, 16 | 3brtr3i 4059 | 1 ⊢ i # 0 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 0cc0 7874 1c1 7875 ici 7876 + caddc 7877 · cmul 7879 # cap 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 |
This theorem is referenced by: 2muliap0 9209 irec 10713 iexpcyc 10718 imval 10997 imre 10998 reim 10999 crim 11005 cjreb 11013 tanval2ap 11859 tanval3ap 11860 efival 11878 |
Copyright terms: Public domain | W3C validator |