ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finexdc GIF version

Theorem finexdc 7006
Description: Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
Assertion
Ref Expression
finexdc ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem finexdc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2704 . . 3 (𝑤 = ∅ → (∃𝑥𝑤 𝜑 ↔ ∃𝑥 ∈ ∅ 𝜑))
21dcbid 840 . 2 (𝑤 = ∅ → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ ∅ 𝜑))
3 rexeq 2704 . . 3 (𝑤 = 𝑦 → (∃𝑥𝑤 𝜑 ↔ ∃𝑥𝑦 𝜑))
43dcbid 840 . 2 (𝑤 = 𝑦 → (DECID𝑥𝑤 𝜑DECID𝑥𝑦 𝜑))
5 rexeq 2704 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∃𝑥𝑤 𝜑 ↔ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
65dcbid 840 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
7 rexeq 2704 . . 3 (𝑤 = 𝐴 → (∃𝑥𝑤 𝜑 ↔ ∃𝑥𝐴 𝜑))
87dcbid 840 . 2 (𝑤 = 𝐴 → (DECID𝑥𝑤 𝜑DECID𝑥𝐴 𝜑))
9 rex0 3479 . . . . 5 ¬ ∃𝑥 ∈ ∅ 𝜑
109olci 734 . . . 4 (∃𝑥 ∈ ∅ 𝜑 ∨ ¬ ∃𝑥 ∈ ∅ 𝜑)
11 df-dc 837 . . . 4 (DECID𝑥 ∈ ∅ 𝜑 ↔ (∃𝑥 ∈ ∅ 𝜑 ∨ ¬ ∃𝑥 ∈ ∅ 𝜑))
1210, 11mpbir 146 . . 3 DECID𝑥 ∈ ∅ 𝜑
1312a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥 ∈ ∅ 𝜑)
14 simpr 110 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑)
15 sbsbc 3003 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
16 rexsns 3673 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
1715, 16bitr4i 187 . . . . . . . . 9 ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑)
1814, 17sylib 122 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → ∃𝑥 ∈ {𝑧}𝜑)
1918olcd 736 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
20 rexun 3354 . . . . . . 7 (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
2119, 20sylibr 134 . . . . . 6 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
2221orcd 735 . . . . 5 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
23 df-dc 837 . . . . 5 (DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
2422, 23sylibr 134 . . . 4 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
25 simpr 110 . . . . . . . . 9 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → ∃𝑥𝑦 𝜑)
2625orcd 735 . . . . . . . 8 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
2726, 20sylibr 134 . . . . . . 7 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
2827orcd 735 . . . . . 6 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
2928, 23sylibr 134 . . . . 5 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
30 simpr 110 . . . . . . . . 9 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ ∃𝑥𝑦 𝜑)
31 simpr 110 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → ¬ [𝑧 / 𝑥]𝜑)
3217notbii 670 . . . . . . . . . . 11 (¬ [𝑧 / 𝑥]𝜑 ↔ ¬ ∃𝑥 ∈ {𝑧}𝜑)
3331, 32sylib 122 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → ¬ ∃𝑥 ∈ {𝑧}𝜑)
3433adantr 276 . . . . . . . . 9 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ ∃𝑥 ∈ {𝑧}𝜑)
35 ioran 754 . . . . . . . . 9 (¬ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑) ↔ (¬ ∃𝑥𝑦 𝜑 ∧ ¬ ∃𝑥 ∈ {𝑧}𝜑))
3630, 34, 35sylanbrc 417 . . . . . . . 8 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
3720notbii 670 . . . . . . . 8 (¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ¬ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
3836, 37sylibr 134 . . . . . . 7 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
3938olcd 736 . . . . . 6 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
4039, 23sylibr 134 . . . . 5 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
41 exmiddc 838 . . . . . 6 (DECID𝑥𝑦 𝜑 → (∃𝑥𝑦 𝜑 ∨ ¬ ∃𝑥𝑦 𝜑))
4241ad2antlr 489 . . . . 5 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → (∃𝑥𝑦 𝜑 ∨ ¬ ∃𝑥𝑦 𝜑))
4329, 40, 42mpjaodan 800 . . . 4 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
44 simplrr 536 . . . . . . 7 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3178 . . . . . 6 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧𝐴)
46 simp-4r 542 . . . . . 6 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → ∀𝑥𝐴 DECID 𝜑)
47 nfs1v 1968 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜑
4847nfdc 1683 . . . . . . 7 𝑥DECID [𝑧 / 𝑥]𝜑
49 sbequ12 1795 . . . . . . . 8 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
5049dcbid 840 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
5148, 50rspc 2872 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
5245, 46, 51sylc 62 . . . . 5 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID [𝑧 / 𝑥]𝜑)
53 exmiddc 838 . . . . 5 (DECID [𝑧 / 𝑥]𝜑 → ([𝑧 / 𝑥]𝜑 ∨ ¬ [𝑧 / 𝑥]𝜑))
5452, 53syl 14 . . . 4 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → ([𝑧 / 𝑥]𝜑 ∨ ¬ [𝑧 / 𝑥]𝜑))
5524, 43, 54mpjaodan 800 . . 3 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
5655ex 115 . 2 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (DECID𝑥𝑦 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
57 simpl 109 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → 𝐴 ∈ Fin)
582, 4, 6, 8, 13, 56, 57findcard2sd 6996 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  [wsb 1786  wcel 2177  wral 2485  wrex 2486  [wsbc 2999  cdif 3164  cun 3165  wss 3167  c0 3461  {csn 3634  Fincfn 6834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-er 6627  df-en 6835  df-fin 6837
This theorem is referenced by:  dfrex2fin  7007  nninfwlpoimlemg  7284  nninfwlpoimlemginf  7285  4sqleminfi  12764
  Copyright terms: Public domain W3C validator