ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finexdc GIF version

Theorem finexdc 6868
Description: Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
Assertion
Ref Expression
finexdc ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem finexdc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2662 . . 3 (𝑤 = ∅ → (∃𝑥𝑤 𝜑 ↔ ∃𝑥 ∈ ∅ 𝜑))
21dcbid 828 . 2 (𝑤 = ∅ → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ ∅ 𝜑))
3 rexeq 2662 . . 3 (𝑤 = 𝑦 → (∃𝑥𝑤 𝜑 ↔ ∃𝑥𝑦 𝜑))
43dcbid 828 . 2 (𝑤 = 𝑦 → (DECID𝑥𝑤 𝜑DECID𝑥𝑦 𝜑))
5 rexeq 2662 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∃𝑥𝑤 𝜑 ↔ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
65dcbid 828 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (DECID𝑥𝑤 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
7 rexeq 2662 . . 3 (𝑤 = 𝐴 → (∃𝑥𝑤 𝜑 ↔ ∃𝑥𝐴 𝜑))
87dcbid 828 . 2 (𝑤 = 𝐴 → (DECID𝑥𝑤 𝜑DECID𝑥𝐴 𝜑))
9 rex0 3426 . . . . 5 ¬ ∃𝑥 ∈ ∅ 𝜑
109olci 722 . . . 4 (∃𝑥 ∈ ∅ 𝜑 ∨ ¬ ∃𝑥 ∈ ∅ 𝜑)
11 df-dc 825 . . . 4 (DECID𝑥 ∈ ∅ 𝜑 ↔ (∃𝑥 ∈ ∅ 𝜑 ∨ ¬ ∃𝑥 ∈ ∅ 𝜑))
1210, 11mpbir 145 . . 3 DECID𝑥 ∈ ∅ 𝜑
1312a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥 ∈ ∅ 𝜑)
14 simpr 109 . . . . . . . . 9 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑)
15 sbsbc 2955 . . . . . . . . . 10 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
16 rexsns 3615 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
1715, 16bitr4i 186 . . . . . . . . 9 ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑)
1814, 17sylib 121 . . . . . . . 8 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → ∃𝑥 ∈ {𝑧}𝜑)
1918olcd 724 . . . . . . 7 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
20 rexun 3302 . . . . . . 7 (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
2119, 20sylibr 133 . . . . . 6 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
2221orcd 723 . . . . 5 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
23 df-dc 825 . . . . 5 (DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
2422, 23sylibr 133 . . . 4 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ [𝑧 / 𝑥]𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
25 simpr 109 . . . . . . . . 9 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → ∃𝑥𝑦 𝜑)
2625orcd 723 . . . . . . . 8 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
2726, 20sylibr 133 . . . . . . 7 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
2827orcd 723 . . . . . 6 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
2928, 23sylibr 133 . . . . 5 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ∃𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
30 simpr 109 . . . . . . . . 9 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ ∃𝑥𝑦 𝜑)
31 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → ¬ [𝑧 / 𝑥]𝜑)
3217notbii 658 . . . . . . . . . . 11 (¬ [𝑧 / 𝑥]𝜑 ↔ ¬ ∃𝑥 ∈ {𝑧}𝜑)
3331, 32sylib 121 . . . . . . . . . 10 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → ¬ ∃𝑥 ∈ {𝑧}𝜑)
3433adantr 274 . . . . . . . . 9 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ ∃𝑥 ∈ {𝑧}𝜑)
35 ioran 742 . . . . . . . . 9 (¬ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑) ↔ (¬ ∃𝑥𝑦 𝜑 ∧ ¬ ∃𝑥 ∈ {𝑧}𝜑))
3630, 34, 35sylanbrc 414 . . . . . . . 8 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
3720notbii 658 . . . . . . . 8 (¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ¬ (∃𝑥𝑦 𝜑 ∨ ∃𝑥 ∈ {𝑧}𝜑))
3836, 37sylibr 133 . . . . . . 7 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
3938olcd 724 . . . . . 6 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → (∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑 ∨ ¬ ∃𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
4039, 23sylibr 133 . . . . 5 (((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) ∧ ¬ ∃𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
41 exmiddc 826 . . . . . 6 (DECID𝑥𝑦 𝜑 → (∃𝑥𝑦 𝜑 ∨ ¬ ∃𝑥𝑦 𝜑))
4241ad2antlr 481 . . . . 5 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → (∃𝑥𝑦 𝜑 ∨ ¬ ∃𝑥𝑦 𝜑))
4329, 40, 42mpjaodan 788 . . . 4 ((((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) ∧ ¬ [𝑧 / 𝑥]𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
44 simplrr 526 . . . . . . 7 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧 ∈ (𝐴𝑦))
4544eldifad 3127 . . . . . 6 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → 𝑧𝐴)
46 simp-4r 532 . . . . . 6 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → ∀𝑥𝐴 DECID 𝜑)
47 nfs1v 1927 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜑
4847nfdc 1647 . . . . . . 7 𝑥DECID [𝑧 / 𝑥]𝜑
49 sbequ12 1759 . . . . . . . 8 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
5049dcbid 828 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
5148, 50rspc 2824 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 DECID 𝜑DECID [𝑧 / 𝑥]𝜑))
5245, 46, 51sylc 62 . . . . 5 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID [𝑧 / 𝑥]𝜑)
53 exmiddc 826 . . . . 5 (DECID [𝑧 / 𝑥]𝜑 → ([𝑧 / 𝑥]𝜑 ∨ ¬ [𝑧 / 𝑥]𝜑))
5452, 53syl 14 . . . 4 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → ([𝑧 / 𝑥]𝜑 ∨ ¬ [𝑧 / 𝑥]𝜑))
5524, 43, 54mpjaodan 788 . . 3 (((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ DECID𝑥𝑦 𝜑) → DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑)
5655ex 114 . 2 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (DECID𝑥𝑦 𝜑DECID𝑥 ∈ (𝑦 ∪ {𝑧})𝜑))
57 simpl 108 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → 𝐴 ∈ Fin)
582, 4, 6, 8, 13, 56, 57findcard2sd 6858 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1343  [wsb 1750  wcel 2136  wral 2444  wrex 2445  [wsbc 2951  cdif 3113  cun 3114  wss 3116  c0 3409  {csn 3576  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  dfrex2fin  6869
  Copyright terms: Public domain W3C validator